
F06 – Linear Algebra Support Routines

Chapter F06

Linear Algebra Support Routines

Contents

1 Scope of the Chapter 2

2 Background to the Problems 2
2.1 The Use of BLAS Names . 2
2.2 Background Information . 3

2.2.1 Real plane rotations . 3
2.2.2 Complex plane rotations . 4
2.2.3 Elementary real (Householder) reflections . 4
2.2.4 Elementary complex (Householder) reflections . 5

3 Recommendations on Choice and Use of Available Routines 6
3.1 The Level-0 Scalar Routines . 6

3.1.1 The BLAS Level-0 scalar routine . 6
3.1.2 The F06 Level-0 scalar routines . 6

3.2 The Level-1 Vector Routines . 7
3.2.1 The BLAS Level-1 vector and sparse vector routines 7
3.2.2 The F06 Level-1 vector routines . 7

3.3 The Level-2 Matrix-vector and Matrix Routines . 8
3.3.1 The BLAS Level-2 matrix-vector routines . 8
3.3.2 The Level-2 matrix routines . 9

3.4 The Level-3 Matrix-matrix Routines . 11
3.4.1 The BLAS Level-3 matrix-matrix routines . 11

4 Description of the F06 Routines 11
4.1 The Level-0 Scalar Routines . 12

4.1.1 The BLAS Level-0 scalar routine . 12
4.1.2 The F06 scalar routines . 12

4.2 The Level-1 Vector Routines . 13
4.2.1 The BLAS Level-1 vector routines . 14
4.2.2 The F06 Level-1 vector routines . 18

4.3 The Level-2 Matrix-vector Routines . 23
4.3.1 The Level-2 BLAS matrix-vector routines . 24

4.4 The Level-2 Matrix Routines . 29
4.4.1 The F06 Level-2 matrix routines . 30

4.5 The Level-3 Matrix-matrix Routines . 39
4.5.1 The Level-3 BLAS matrix-matrix routines . 39

5 Routines Withdrawn or Scheduled for Withdrawal 42

6 Indexes of BLAS routines 43

7 References 43

[NP3390/19/pdf] F06.1

Introduction – F06 F06 – Linear Algebra Support Routines

1 Scope of the Chapter

This chapter is concerned with basic linear algebra routines which perform elementary algebraic
operations involving scalars, vectors and matrices.

2 Background to the Problems

A number of the routines in this chapter meet the specification of the Basic Linear Algebra Subprograms
(BLAS) as described in Lawson et al. [7], Dodson et al. [2], Dongarra et al. [4] and [5]. The first reference
describes a set of routines concerned with operations on scalars and vectors: these will be referred to
here as the Level-0 and the Level-1 BLAS; the second reference describes a set of routines concerned
with operations on sparse vectors: these will be referred to here as the Level-1 Sparse BLAS; the third
reference describes a set of routines concerned with matrix-vector operations: these will be referred to here
as the Level-2 BLAS; and the fourth reference describes a set of routines concerned with matrix-matrix
operations: these will be referred to here as the Level-3 BLAS.

More generally we refer to the scalar routines in the chapter as Level-0 routines, to the vector routines as
Level-1 routines, to the matrix-vector and matrix routines as Level-2 routines, and to the matrix-matrix
routines as Level-3 routines. The terminology reflects the number of operations involved. For example,
a Level-2 routine involves O(n2) operations for an n× n matrix.

Table 1 indicates the naming scheme for the routines in this chapter. The heading BLAS in the table
indicates that routines in that category meet the specification of the BLAS, the heading ‘mixed type’ is
for routines where a mixture of data types is involved, such as a routine that returns the real Euclidean
length of a complex vector. In future marks of the Library, routines may be included in categories that
are currently empty and further categories may be introduced.

Level-0 Level-1 Level-2 Level-3

integer F06 routine – F06D F – –
‘real’ BLAS routine F06A F F06E F F06P F F06Y F
‘real’ F06 routine F06B F F06F F F06Q F

F06R F
–

‘complex’ BLAS routine – F06G F F06S F F06Z F
‘complex’ F06 routine F06C F F06H F F06T F

F06U F
‘mixed type’ BLAS routine – F06J F – –
‘mixed type’ F06 routine – F06K F F06V F –

Table 1

The routines in this chapter do not have full routine documents, but instead are covered by some relevant
background material, in Section 2.2, together with general descriptions, in Section 4, sufficient to enable
their use. Descriptions of the individual routines are included in the NAG online documentation. As
this chapter is concerned only with basic linear algebra operations, the routines will not normally be
required by the general user. The functionality of each routine is indicated in Section 4 so that those
users requiring these routines to build specialist linear algebra modules can determine which routines are
of interest.

2.1 The Use of BLAS Names

Many of the routines in other chapters of the Library call the routines in this chapter, and in particular
a number of the BLAS are called. These routines are usually called by the BLAS name and so, for
correct operation of the Library, it is essential that you do not attempt to link your own versions of these
routines. If you are in any doubt about how to avoid this, please consult your computer centre or the
NAG Response Centre.

The BLAS names are used in order to make use of efficient implementations of the routines when these
exist. Such implementations are stringently tested before being used, to ensure that they correctly meet
the specification of the BLAS, and that they return the desired accuracy (see, for example, Dodson et al.
[2], Dongarra et al. [4] and [5]).

F06.2 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

2.2 Background Information

Most of the routines in this chapter implement straightforward scalar, vector and matrix operations that
need no further explanation beyond a statement of the purpose of the routine. In this section we give some
additional background information to those few cases where additional explanation may be necessary. A
sub-section is devoted to each topic.

2.2.1 Real plane rotations

There are a number of routines in the chapter concerned with setting up and applying plane rotations.
This section discusses the real case and the next section looks at the complex case. For further background
information see Golub and Van Loan [6].

A plane rotation matrix for the (i, j) plane, Rij , is an orthogonal matrix that is different from the unit
matrix only in the elements rii, rjj , rij and rji. If we put

R =
(

rii rij

rji rjj

)
,

then, in the real case, it is usual to choose Rij so that

R =
(

c s
−s c

)
, c = cos θ, s = sin θ. (1)

An exception is routine F06FPF which applies the so-called symmetric rotation for which

R =
(

c s
s −c

)
. (2)

The application of plane rotations is straightforward and needs no further elaboration, so further comment
is made only on the construction of plane rotations.

The most common use of plane rotations is to choose c and s so that for given a and b,(
c s
−s c

)(
a
b

)
=
(

d
0

)
. (3)

In such an application the matrix R is often termed a Givens rotation matrix. There are two approaches
to the construction of real Givens rotations in Chapter F06.

The BLAS routine F06AAF (SROTG/DROTG), see Lawson et al. [7] and Dodson and Grimes [1],
computes c, s and d as

d = σ(a2 + b2)1/2,

c =
{

a/d, d �= 0,
1, d = 0, s =

{
b/d, d �= 0,
0, d = 0, (4)

where σ =
{
sign a, |a| > |b|
sign b, |a| ≤ |b| .

The value z defined as
z =

{
s, |s| < c or c = 0
1/c, 0 < |c| ≤ s

(5)

is also computed and this enables c and s to be reconstructed from the single value z as

c =

0, z = 1
(1 − z2)1/2, |z| < 1
1/z, |z| > 1

s =

1, z = 1
z, |z| < 1
(1− c2)1/2, |z| > 1

The other F06 routines for constructing Givens rotations are based on the computation of the tangent,
t = tan θ. t is computed as

t =

0, b = 0
b/a, |b| ≤ |a|.f lmax, b �= 0
sign(b/a).f lmax, |b| > |a|.f lmax
sign(b).f lmax, b �= 0, a = 0

(6)

[NP3390/19/pdf] F06.3

Introduction – F06 F06 – Linear Algebra Support Routines

where flmax = 1/flmin and flmin is the small positive value returned by X02AMF. The values of c
and s are then computed or reconstructed via t as

c =

1/(1 + t2)1/2,

√
eps ≤ |t| ≤ 1/√eps

1, |t| < √eps
1/|t|, |t| > 1/

√
eps

s =

c.t,
√
eps ≤ |t| ≤ 1/√eps

t, |t| < √eps
sign t, |t| > 1/

√
eps

(7)

where eps is the machine precision. Note that c is always non-negative in this scheme and that the
same expressions are used in the initial computation of c and s from a and b as in any subsequent recovery
of c and s via t. This is the approach used by many of the NAG Fortran Library routines that require
plane rotations. d is computed simply as

d = c.a+ s.b.

You need not be too concerned with the above detail, since routines are provided for setting up, recovering
and applying such rotations.

Another use of plane rotations is to choose c and s so that for given x, y and z(
c s
−s c

)(
x y
y z

)(
c −s
s c

)
=
(

a 0
0 b

)
. (8)

In such an application the matrix R is often termed a Jacobi rotation matrix. The routine that generates
a Jacobi rotation (F06BEF) first computes the tangent t and then computes c and s via t as described
above for the Givens rotation.

2.2.2 Complex plane rotations

In the complex case a plane rotation matrix for the (i, j) plane, Rij is a unitary matrix and, analogously
to the real case, it is usual to choose Rij so that

R =
(

c̄ s̄
−s c

)
, |c|2 + |s|2 = 1, (9)

where ā denotes the complex conjugate of a. The BLAS (Lawson et al. [7]) do not contain a routine for
the generation of complex rotations, and so the routines in Chapter F06 are all based upon computing c
and s via t = b/a in an analogous manner to the real case. R can be chosen to have either c real, or s
real and there are routines for both cases.

When c is real then it is non-negative and the transformation(
c s̄
−s c

)(
a
b

)
=
(

d
0

)
(10)

is such that if a is real then d is also real.

When s is real then the transformation(
c̄ s
−s c

)(
a
b

)
=
(

d
0

)
(11)

is such that if b is real then d is also real.

2.2.3 Elementary real (Householder) reflections

There are a number of routines in the chapter concerned with setting up and applying Householder
transformations. This section discusses the real case and the next section looks at the complex case. For
further background information see Golub and Van Loan [6].

A real elementary reflector, P , is a matrix of the form

P = I − µuuT , µuTu = 2, (12)

where µ is a scalar and u is a vector, and P is both symmetric and orthogonal. In the routines in Chapter
F06, u is expressed in the form

u =
(

ζ
z

)
, ζ a scalar (13)

F06.4 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

because in many applications ζ and z are not contiguous elements. The usual use of elementary reflectors
is to choose µ and u so that for given α and x

P

(
α
x

)
=
(

β
0

)
, α and β scalars. (14)

Such a transformation is often termed a Householder transformation. There are two choices of µ and u
available in Chapter F06.

The first form of the Householder transformation is compatible with that used by LINPACK (see Dongarra
et al. [3]) and has

µ = 1/ζ. (15)

This choice makes ζ satisfy
1 ≤ ζ ≤ 2.

The second form, and the form used by many of the NAG Fortran Library routines, has

µ = 1 (16)

which makes
1 ≤ ζ ≤

√
2.

In both cases the special setting
ζ = 0 (17)

is used by the routines to flag the case where P = I.

Note that while there are routines to apply an elementary reflector to a vector, there are no routines
available in Chapter F06 to apply an elementary reflector to a matrix. This is because such
transformations can readily and efficiently be achieved by calls to the matrix-vector Level 2 BLAS
routines. For example, to form PA for a given matrix

PA = (I − µuuT)A = A− µuuTA

= A− µubT , b = ATu,
(18)

and so we can call a matrix-vector product routine to form b = ATu and then call a rank-one update
routine to form (A− µubT). Of course, we must skip the transformation when ζ has been set to zero.

2.2.4 Elementary complex (Householder) reflections

A complex elementary reflector, P , is a matrix of the form

P = I − µuuH, µuHu = 2, µ real,

where uH denotes the complex conjugate of uT , and P is both Hermitian and unitary. For convenience
in a number of applications this definition can be generalized slightly by allowing µ to be complex and
so defining the generalized elementary reflector as

P = I − µuuH, |µ|2uHu = µ+ µ̄ (19)

for which P is still unitary, but is no longer Hermitian.

The F06 routines choose µ and ζ so that

Re(µ) = 1, Im(ζ) = 0 (20)

and this reduces to (12) with the choice (16) when µ and u are real. This choice is used because µ and
u can now be chosen so that in the Householder transformation (14) we can make

Im(β) = 0

and, as in the real case,
1 ≤ ζ ≤

√
2.

[NP3390/19/pdf] F06.5

Introduction – F06 F06 – Linear Algebra Support Routines

Rather than returning µ and ζ as separate parameters the F06 routines return the single complex value
θ defined as

θ = ζ + i. Im(µ), i =
√
−1.

Obviously ζ and µ can be recovered as

ζ = Re(θ), µ = 1 + i. Im(θ).

The special setting
θ = 0

is used to flag the case where P = I, and

Re(θ) ≤ 0, Im(θ) �= 0

is used to flag the case where

P =
(

γ 0
0 I

)
, γ a scalar (21)

and in this case θ actually contains the value of γ. Notice that with both (18) and (21) we merely have
to supply θ̄ rather than θ in order to represent PH .

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

This section lists the routines in each of the categories Level-0 (scalar), Level-1 (vector), Level-2 (matrix-
vector and matrix) and Level-3 (matrix-matrix). In each case a separate sub-section is given for the
routines that meet the specification of the BLAS and for the other F06 routines. For routines that meet
the specification of the BLAS, the corresponding BLAS name is indicated in brackets; in single precision
implementations the first of the names in the brackets is the appropriate name and in double precision
implementations it is the second of the names that is appropriate.

Within each section routines are listed in alphabetic order of the fifth character in the routine name, so
that corresponding real and complex routines may have adjacent entries.

3.1 The Level-0 Scalar Routines

The Level-0 routines just perform scalar operations such as generating a plane rotation.

3.1.1 The BLAS Level-0 scalar routine

F06AAF (SROTG/DROTG) generates a real plane rotation

3.1.2 The F06 Level-0 scalar routines

F06BAF generates a real plane rotation, storing the tangent

F06CAF generates a complex plane rotation, storing the tangent (real cosine)

F06CBF generates a complex plane rotation, storing the tangent (real sine)

F06BCF recovers the cosine and sine from a given real tangent

F06CCF recovers the cosine and sine from a given complex tangent (real cosine)

F06CDF recovers the cosine and sine from a given complex tangent (real sine)

F06BEF generates a real Jacobi plane rotation

F06BHF applies a real similarity rotation to a 2× 2 symmetric matrix
F06CHF applies a complex similarity rotation to a 2× 2 Hermitian matrix
F06BLF divides two real scalars, with an overflow flag

F06CLF divides two complex scalars, with an overflow flag

F06BMF calculates the Euclidean length of a vector following the use of routines F06FJF or F06KJF

F06BNF computes the value (a2 + b2)1/2; a, b real

F06BPF computes an eigenvalue of a 2× 2 real symmetric matrix

F06.6 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

3.2 The Level-1 Vector Routines

The Level-1 routines perform operations on or between vectors, such as computing dot products and
Euclidean lengths.

3.2.1 The BLAS Level-1 vector and sparse vector routines

F06EAF (SDOT/DDOT) computes the dot product of two real vectors

F06GAF (CDOTU/ZDOTU) computes the dot product of two complex vectors (unconjugated)

F06GBF (CDOTC/ZDOTC) computes the dot product of two complex vectors (conjugated)

F06ECF (SAXPY/DAXPY) adds a scalar times a vector to another real vector

F06GCF (CAXPY/ZAXPY) adds a scalar times a vector to another complex vector

F06EDF (SSCAL/DSCAL) multiplies a real vector by a scalar

F06GDF (CSCAL/ZSCAL) multiplies a complex vector by a scalar

F06JDF (CSSCAL/ZDSCAL) multiplies a complex vector by a real scalar

F06EFF (SCOPY/DCOPY) copies a real vector

F06GFF (CCOPY/ZCOPY) copies a complex vector

F06EGF (SSWAP/DSWAP) swaps two real vectors

F06GGF (CSWAP/ZSWAP) swaps two complex vectors

F06EJF (SNRM2/DNRM2) computes the Euclidean length of a real vector

F06JJF (SCNRM2/DZNRM2) computes the Euclidean length of a complex vector

F06EKF (SASUM/DASUM) sums the absolute values of the elements of a real vector

F06JKF (SCASUM/DZASUM) sums the absolute values of the elements of a complex vector

F06JLF (ISAMAX/IDAMAX) finds the index of the element of largest absolute value of a real vector

F06JMF (ICAMAX/IZAMAX) finds the index of the element of largest absolute value of a complex
vector

F06EPF (SROT/DROT) applies a real plane rotation

F06ERF (SDOTI/DDOTI) computes the dot product of two real sparse vectors

F06GRF (CDOTUI/ZDOTUI) computes the dot product of two complex sparse vectors (unconjugated)

F06GSF (CDOTCI/ZDOTCI) computes the dot product of two complex sparse vectors (conjugated)

F06ETF (SAXPYI/DAXPYI) adds a scalar times a sparse vector to another real sparse vector

F06GTF (CAXPYI/ZAXPYI) adds a scalar times a sparse vector to another complex sparse vector

F06EUF (SGTHR/DGTHR) gathers a real sparse vector

F06GUF (CGTHR/ZGTHR) gathers a complex sparse vector

F06EVF (SGTHRZ/DGTHRZ) gathers and sets to zero a real sparse vector

F06GVF (CGTHRZ/ZGTHRZ) gathers and sets to zero a complex sparse vector

F06EWF (SSCTR/DSCTR) scatters a real sparse vector

F06GWF (CSCTR/ZSCTR) scatters a complex sparse vector

F06EXF (SROTI/DROTI) applies a plane rotation to two real sparse vectors

3.2.2 The F06 Level-1 vector routines

F06FAF computes the cosine of the angle between two real vectors

F06DBF loads a scalar into each element of an integer vector

F06FBF loads a scalar into each element of a real vector

F06HBF loads a scalar into each element of a complex vector

F06FCF multiplies a real vector by a diagonal matrix

F06HCF multiplies a complex vector by a diagonal matrix

[NP3390/19/pdf] F06.7

Introduction – F06 F06 – Linear Algebra Support Routines

F06KCF multiplies a complex vector by a real diagonal matrix

F06FDF multiplies a real vector by a scalar, preserving the input vector

F06HDF multiplies a complex vector by a scalar, preserving the input vector

F06KDF multiplies a complex vector by a real scalar, preserving the input vector

F06DFF copies an integer vector

F06KFF copies a real vector to a complex vector

F06FGF negates a real vector

F06HGF negates a complex vector

F06FJF updates the Euclidean length of a real vector in scaled form

F06KJF updates the Euclidean length of a complex vector in scaled form

F06FKF finds the weighted Euclidean length of a real vector

F06FLF finds the elements of largest and smallest absolute value of a real vector

F06KLF finds the last non-negligible element of a real vector

F06FPF applies a real symmetric plane rotation

F06HPF applies a complex plane rotation

F06KPF applies a real plane rotation to two complex vectors

F06FQF generates a sequence of real plane rotations

F06HQF generates a sequence of complex plane rotations

F06FRF generates a real elementary reflection (NAG style)

F06HRF generates a complex elementary reflection

F06FSF generates a real elementary reflection (LINPACK style)

F06FTF applies a real elementary reflection (NAG style)

F06HTF applies a complex elementary reflection

F06FUF applies a real elementary reflection (LINPACK style)

3.3 The Level-2 Matrix-vector and Matrix Routines

The Level-2 routines perform matrix-vector and matrix operations, such as forming the product between
a matrix and a vector, computing Frobenius norms and applying a sequence of plane rotations.

3.3.1 The BLAS Level-2 matrix-vector routines

F06PAF (SGEMV/DGEMV) computes a matrix-vector product; real general matrix

F06SAF (CGEMV/ZGEMV) computes a matrix-vector product; complex general matrix

F06PBF (SGBMV/DGBMV) computes a matrix-vector product; real general band matrix

F06SBF (CGBMV/ZGBMV) computes a matrix-vector product; complex general band matrix

F06PCF (SSYMV/DSYMV) computes a matrix-vector product; real symmetric matrix

F06SCF (CHEMV/ZHEMV) computes a matrix-vector product; complex Hermitian matrix

F06PDF (SSBMV/DSBMV) computes a matrix-vector product; real symmetric band matrix

F06SDF (CHBMV/ZHBMV) computes a matrix-vector product; complex Hermitian band matrix

F06PEF (SSPMV/DSPMV) computes a matrix-vector product; real symmetric packed matrix

F06SEF (CHPMV/ZHPMV) computes a matrix-vector product; complex Hermitian packed matrix

F06PFF (STRMV/DTRMV) computes a matrix-vector product; real triangular matrix

F06SFF (CTRMV/ZTRMV) computes a matrix-vector product; complex triangular matrix

F06PGF (STBMV/DTBMV) computes a matrix-vector product; real triangular band matrix

F06SGF (CTBMV/ZTBMV) computes a matrix-vector product; complex triangular band matrix

F06PHF (STPMV/DTPMV) computes a matrix-vector product; real triangular packed matrix

F06.8 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

F06SHF (CTPMV/ZTPMV) computes a matrix-vector product; complex triangular packed matrix

F06PJF (STRSV/DTRSV) solves a system of equations; real triangular coefficient matrix

F06SJF (CTRSV/ZTRSV) solves a system of equations; complex triangular coefficient matrix

F06PKF (STBSV/DTBSV) solves a system of equations; real triangular band coefficient matrix

F06SKF (CTBSV/ZTBSV) solves a system of equations; complex triangular band coefficient matrix

F06PLF (STPSV/DTPSV) solves a system of equations; real triangular packed coefficient matrix

F06SLF (CTPSV/ZTPSV) solves a system of equations; complex triangular packed coefficient
matrix

F06PMF (SGER/DGER) performs a rank-one update; real general matrix

F06SMF (CGERU/ZGERU) performs a rank-one update; complex general matrix (unconjugated
vector)

F06SNF (CGERC/ZGERC) performs a rank-one update; complex general matrix (conjugated
vector)

F06PPF (SSYR/DSYR) performs a rank-one update; real symmetric matrix

F06SPF (CHER/ZHER) performs a rank-one update; complex Hermitian matrix

F06PQF (SSPR/DSPR) performs a rank-one update; real symmetric packed matrix

F06SQF (CHPR/ZHPR) performs a rank-one update; complex Hermitian packed matrix

F06PRF (SSYR2/DSYR2) performs a rank-two update; real symmetric matrix

F06SRF (CHER2/ZHER2) performs a rank-two update; complex Hermitian matrix

F06PSF (SSPR2/DSPR2) performs a rank-two update; real symmetric packed matrix

F06SSF (CHPR2/ZHPR2) performs a rank-two update; complex Hermitian packed matrix

3.3.2 The Level-2 matrix routines

F06QFF copies a real general or trapezoidal matrix

F06TFF copies a complex general or trapezoidal matrix

F06QHF loads a scalar into each element of a real general or trapezoidal matrix; a different scalar may
be loaded into the diagonal elements

F06THF loads a scalar into each element of a complex general or trapezoidal matrix; a different scalar
may be loaded into the diagonal elements

F06QJF applies a sequence of permutation matrices, represented by an integer array, to a real general
matrix

F06VJF applies a sequence of permutation matrices, represented by an integer array, to a complex
general matrix

F06QKF applies a sequence of permutation matrices, represented by a real array, to a real general
matrix

F06VKF applies a sequence of permutation matrices, represented by a real array, to a complex general
matrix

F06QMF applies a sequence of plane rotations, as a similarity transformation, to a real symmetric
matrix

F06TMF applies a sequence of plane rotations, as a similarity transformation, to a complex Hermitian
matrix

F06QPF applies a rank-one update to a real upper triangular matrix, maintaining upper triangular
form

F06TPF applies a rank-one update to a complex upper triangular matrix, maintaining upper triangular
form

F06QQF performs a QR factorization of a real upper triangular matrix augmented by an additional full
row

[NP3390/19/pdf] F06.9

Introduction – F06 F06 – Linear Algebra Support Routines

F06TQF performs a QR factorization of a complex upper triangular matrix augmented by an additional
full row

F06QRF applies a sequence of plane rotations, from either the left or the right, to reduce a real upper
Hessenberg matrix to upper triangular form

F06TRF applies a sequence of plane rotations, from either the left or the right, to reduce a complex
upper Hessenberg matrix to upper triangular form

F06QSF applies a sequence of plane rotations, from either the left or the right, to reduce a real upper
spiked matrix to upper triangular form

F06TSF applies a sequence of plane rotations, from either the left or the right, to reduce a complex
upper spiked matrix to upper triangular form

F06QTF applies a given sequence of plane rotations, from either the left or the right, to a real upper
triangular matrix and reduces the resulting matrix back to upper triangular form by applying
plane rotations from the other side

F06TTF applies a given sequence of plane rotations, from either the left or the right, to a complex
upper triangular matrix and reduces the resulting matrix back to upper triangular form by
applying plane rotations from the other side

F06QVF applies a given sequence of plane rotations, from either the left or the right, to a real upper
triangular matrix to give an upper Hessenberg matrix

F06TVF applies a given sequence of plane rotations, from either the left or the right, to a complex
upper triangular matrix to give an upper Hessenberg matrix

F06QWF applies a given sequence of plane rotations, from either the left or the right, to a real upper
triangular matrix to give an upper spiked matrix

F06TWF applies a given sequence of plane rotations, from either the left or the right, to a complex
upper triangular matrix to give an upper spiked matrix

F06QXF applies a given sequence of plane rotations, from either the left or the right, to a real general
matrix

F06TXF applies a given sequence of plane rotations with real cosines, from either the left or the right,
to a complex general matrix

F06TYF applies a given sequence of plane rotations with real sines, from either the left or the right, to
a complex general matrix

F06VXF applies a given sequence of real plane rotations, from either the left or the right, to a complex
general matrix

F06RAF computes a norm, or the element of largest absolute value of a real general matrix

F06UAF computes a norm, or the element of largest absolute value of a complex general matrix

F06RBF computes a norm, or the element of largest absolute value of a real band matrix

F06UBF computes a norm, or the element of largest absolute value of a complex band matrix

F06RCF computes a norm, or the element of largest absolute value of a real symmetric matrix

F06UCF computes a norm, or the element of largest absolute value of a complex Hermitian matrix

F06RDF computes a norm, or the element of largest absolute value of a real symmetric matrix stored
in packed form

F06UDF computes a norm, or the element of largest absolute value of a complex Hermitian matrix
stored in packed form

F06REF computes a norm, or the element of largest absolute value of a real symmetric band matrix

F06UEF computes a norm, or the element of largest absolute value of a complex Hermitian band matrix

F06RJF computes a norm, or the element of largest absolute value of a real general trapezoidal matrix

F06UJF computes a norm, or the element of largest absolute value of a complex general trapezoidal
matrix

F06RKF computes a norm, or the element of largest absolute value of a real triangular matrix stored
in packed form

F06.10 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

F06UKF computes a norm, or the element of largest absolute value of a complex triangular matrix
stored in packed form

F06RLF computes a norm, or the element of largest absolute value of a real triangular band matrix
F06ULF computes a norm, or the element of largest absolute value of a complex triangular band matrix
F06RMF computes a norm, or the element of largest absolute value of a real Hessenberg matrix
F06UMF computes a norm, or the element of largest absolute value of a complex Hessenberg matrix
F06UFF computes a norm, or the element of largest absolute value of a complex symmetric matrix
F06UGF computes a norm, or the element of largest absolute value of a complex symmetric matrix

stored in packed form
F06UHF computes a norm, or the element of largest absolute value of a complex symmetric band matrix

3.4 The Level-3 Matrix-matrix Routines

The Level-3 routines perform matrix-matrix operations, such as forming the product of two matrices.

3.4.1 The BLAS Level-3 matrix-matrix routines

F06YAF (SGEMM/DGEMM) computes a matrix-matrix product; two real rectangular matrices
F06ZAF (CGEMM/ZGEMM) computes a matrix-matrix product; two complex rectangular matrices
F06YCF (SSYMM/DSYMM) computes a matrix-matrix product; one real symmetric matrix, one real

rectangular matrix
F06ZCF (CHEMM/ZHEMM) computes a matrix-matrix product; one complex Hermitian matrix, one

complex rectangular matrix
F06YFF (STRMM/DTRMM) computes a matrix-matrix product; one real triangular matrix, one real

rectangular matrix
F06ZFF (CTRMM/ZTRMM) computes a marix-matrix product; one complex triangular matrix, one

complex rectangular matrix
F06YJF (STRSM/DTRSM) solves a system of equations with multiple right-hand sides, real

triangular coefficient matrix
F06ZJF (CTRSM/ZTRSM) solves a system of equations with multiple right-hand sides, complex

triangular coefficient matrix
F06YPF (SSYRK/DSYRK) performs a rank-k update of a real symmetric matrix
F06ZPF (CHERK/ZHERK) performs a rank-k update of a complex hermitian matrix
F06YRF (SSYR2K/DSYR2K) performs a rank-2k update of a real symmetric matrix
F06ZRF (CHER2K/ZHER2K) performs a rank-2k update of a complex Hermitian matrix
F06ZTF (CSYMM/ZSYMM) computes a matrix-matrix product: one complex symmetric matrix,

one complex rectangular matrix
F06ZUF (CSYRK/ZSYRK) performs a rank-k update of a complex symmetric matrix
F06ZWF (CSYR2K/ZSYR2K) performs a rank-2k update of a complex symmetric matrix

4 Description of the F06 Routines

In this section we describe the purpose of each routine and give information on the parameter lists, where
appropriate indicating their general nature. Usually the association between the routine arguments and
the mathematical variables is obvious and in such cases a description of the argument is omitted.

Within each section, the parameter lists for all routines are presented, followed by the purpose of the
routines and information on the parameter lists.

For those routines that meet the specification of the BLAS, the parameter lists indicate the single precision
BLAS name, but this should be substituted by the double precision BLAS name in double precision
implementations (see Sections 3.1–3.4).

Within each section routines are listed in alphabetic order of the fifth character in the routine name, so
that corresponding real and complex routines may have adjacent entries.

[NP3390/19/pdf] F06.11

Introduction – F06 F06 – Linear Algebra Support Routines

4.1 The Level-0 Scalar Routines

The scalar routines have no array arguments.

4.1.1 The BLAS Level-0 scalar routine

SUBROUTINE F06AAF (A,B,C,S)

ENTRY srotg (A,B,C,S)

real A,B,C,S

F06AAF generates the parameters c and s of a Givens rotation as defined by equations (4) and (5), from
given a and b. On exit, A is overwritten by d and B is overwritten by z.

4.1.2 The F06 scalar routines

SUBROUTINE F06BAF (A,B,C,S)

real A,B,C,S

SUBROUTINE F06CAF (A,B,C,S)

complex A,B, S

real C

SUBROUTINE F06CBF (A,B,C,S)

complex A,B,C

real S

SUBROUTINE F06BCF (T,C,S)

real T,C,S

SUBROUTINE F06CCF (T,C,S)

complex T, S

real C

SUBROUTINE F06CDF (T,C,S)

complex T,C

real S

SUBROUTINE F06BEF (JOB,X,Y,Z,C,S)

CHARACTER*1 JOB

real X,Y,Z,C,S

SUBROUTINE F06BHF (X,Y,Z,C,S)

real X,Y,Z,C,S

SUBROUTINE F06CHF (X,Y,Z,C,S)

complex X,Y,Z, S

real C

real FUNCTION F06BLF (A,B,FAIL)

real A,B

LOGICAL FAIL

complex FUNCTION F06CLF (A,B,FAIL)

complex A,B

LOGICAL FAIL

real FUNCTION F06BMF (SCALE,SSQ)

real SCALE,SSQ

real FUNCTION F06BNF (A,B)

real A,B

real FUNCTION F06BPF (X,Y,Z)

real X,Y,Z

F06.12 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

F06BAF, F06CAF and F06CBF generate the parameters c and s of a Givens rotation as defined by
equations (6), (7) and their complex equivalents, from given a and b. On exit, A is overwritten by d and
B is overwritten by t.

F06BCF, F06CCF and F06CDF recover the parameters c and s of a plane rotation from a given value of
t.

F06BEF generates the parameters c and s of a Jacobi rotation from given x, y and z (see equation (8)).
The input parameter JOB controls the choice of rotation as follows:

JOB = ’B’, then c ≥ 1/
√
2,

JOB = ’S’, then 0 ≤ c ≤ 1/
√
2,

JOB = ’M’, then |a| ≥ |b|.

On exit, a and b are overwritten on X and Z, and t is overwritten on Y.

F06BHF and F06CHF apply a similarity plane rotation to a two by two symmetric or Hermitian matrix
defined by x, y and z. X, Y and Z are overwritten by the transformed elements.

F06BLF and F06CLF return the value a/b, unless overflow would occur. If overflow would occur then the
value zero is returned when a = 0 and a value big, defined as follows, is returned otherwise. For F06BLF
big is defined as

big = flmax.sign(a/b)

and for F06CLF big is defined as

big = flmax.(sign(Re(a/b)) + i.sign(Im(a/b))),

where flmax is the reciprocal of the value returned by X02AMF and sign(a/b) is taken as sign(a) when
b = 0. The argument FAIL is returned as false when overflow would not occur and is returned as true
otherwise.

F06BMF returns the value scale.
√
sumsq. This routine is intended to be used following either of the

routines F06FJF or F06KJF.

F06BNF returns the value (a2 + b2)1/2, for given a and b.

F06BPF returns an eigenvalue of a two by two symmetric matrix. The eigenvalue λ is given by

λ = z − y/(f + sign(f).(1 + f2)1/2), where f = (x− z)/(2y).

When y = 0 then λ = z.

4.2 The Level-1 Vector Routines

The vector routines all have one or more one-dimensional arrays as arguments, each representing a vector.

In the non-sparse case the length of each vector, n, is represented by the argument N, and the routines
may be called with non-positive values of N, in which case the routine returns immediately except for
the functions, which set the function value to zero before returning.

In addition to the argument N, each array argument is also associated with an increment argument that
immediately follows the array argument, and whose name consists of the three characters INC, followed
by the name of the array. For example, a vector x will be represented by the two arguments X, INCX.
The increment argument is the spacing (stride) in the array for which the elements of the vector occur.
For instance, if INCX=2, then the elements of x are in locations X(1),X(3),. . .,X(2∗N−1) of the array X
and the intermediate locations X(2),X(4),. . .,X(2∗N−2) are not referenced.
Thus when INCX >0, the vector element xi is in the array element X(1+(i − 1)∗INCX). When INCX
≤ 0 the elements are stored in the reverse order so that the vector element xi is in the array element
X(1 − (n − i) ∗ INCX) and hence, in particular, the element xn is in X(1). The declared length of the
array X in the calling (sub)program must be at least (1 + (N− 1) ∗ |INCX|).
Non-positive increments are permitted only for those routines that have more than one array argument.
While zero increments are formally permitted for such routines, their use in Chapter F06 is strongly

[NP3390/19/pdf] F06.13

Introduction – F06 F06 – Linear Algebra Support Routines

discouraged since the effect may be implementation dependent. There will usually be an alternative
routine, with a simplified parameter list, to achieve the required purpose.

In the sparse case the routines are all concerned with operations on two sparse n element vectors x and y.
The vector x is stored in a dense (compressed) one-dimensional array X containing only the interesting
(usually non-zero) elements of x, while y is stored in full uncompressed form in an n element array Y. The
vector x is represented by the three arguments NZ, X and INDX, where NZ is the number of interesting
elements of x and INDX is a one-dimensional (index) array such that

x(INDX(i)) = X(i), i = 1, 2, . . . ,NZ.

The vector y is represented only by the argument Y; no increment arguments are included.

Non-positive values of NZ are permitted, in which case the routine returns immediately except for
functions, which set the function value to zero before returning. For those routines where Y is an output
argument the values in the array INDX must be distinct; violating this condition may yield incorrect
results.

4.2.1 The BLAS Level-1 vector routines

real FUNCTION F06EAF (N, X,INCX,Y,INCY)

real sdot
ENTRY sdot (N, X,INCX,Y,INCY)

INTEGER N, INCX,INCY

real X(*), Y(*)

complex FUNCTION F06GAF (N, X,INCX,Y,INCY)

complex cdotu
ENTRY cdotu (N, X,INCX,Y,INCY)

INTEGER N, INCX, INCY

complex X(*), Y(*)

complex FUNCTION F06GBF (N, X,INCX,Y,INCY)

complex cdotc
ENTRY cdotc (N, X,INCX,Y,INCY)

INTEGER N, INCX, INCY

complex X(*), Y(*)

SUBROUTINE F06ECF (N,ALPHA, X,INCX,Y,INCY)

ENTRY saxpy (N,ALPHA, X,INCX,Y,INCY)

INTEGER N, INCX, INCY

real ALPHA, X(*), Y(*)

SUBROUTINE F06GCF (N,ALPHA, X,INCX,Y,INCY)

ENTRY caxpy (N,ALPHA, X,INCX,Y,INCY)

INTEGER N, INCX, INCY

complex ALPHA, X(*), Y(*)

SUBROUTINE F06EDF (N,ALPHA, X,INCX)

ENTRY sscal (N,ALPHA, X,INCX)

INTEGER N, INCX

real ALPHA, X(*)

SUBROUTINE F06GDF (N,ALPHA, X,INCX)

ENTRY cscal (N,ALPHA, X,INCX)

INTEGER N, INCX

complex ALPHA, X(*)

SUBROUTINE F06JDF (N,ALPHA, X,INCX)

ENTRY csscal (N,ALPHA, X,INCX)

INTEGER N, INCX

real ALPHA

complex X(*)

F06.14 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

SUBROUTINE F06EFF (N, X,INCX,Y,INCY)

ENTRY scopy (N, X,INCX,Y,INCY)

INTEGER N, INCX, INCY

real X(*), Y(*)

SUBROUTINE F06GFF (N, X,INCX,Y,INCY)

ENTRY ccopy (N, X,INCX,Y,INCY)

INTEGER N, INCX, INCY

complex X(*), Y(*)

SUBROUTINE F06EGF (N, X,INCX,Y,INCY)

ENTRY sswap (N, X,INCX,Y,INCY)

INTEGER N, INCX, INCY

real X(*), Y(*)

SUBROUTINE F06GGF (N, X,INCX,Y,INCY)

ENTRY cswap (N, X,INCX,Y,INCY)

INTEGER N, INCX, INCY

complex X(*), Y(*)

real FUNCTION F06EJF (N, X,INCX)

real snrm
ENTRY snrm (N, X,INCX)

INTEGER N, INCX

real X(*)

real FUNCTION F06JJF (N, X,INCX)

real scnrm
ENTRY scnrm (N, X,INCX)

INTEGER N, INCX

complex X(*)

real FUNCTION F06EKF (N, X,INCX)

real sasum
ENTRY sasum (N, X,INCX)

INTEGER N, INCX

real X(*)

real FUNCTION F06JKF (N, X,INCX)

real scasum
ENTRY scasum (N, X,INCX)

INTEGER N, INCX

complex X(*)

INTEGER FUNCTION F06JLF (N, X,INCX)

INTEGER isamax
ENTRY isamax (N, X,INCX)

INTEGER N, INCX

real X(*)

INTEGER FUNCTION F06JMF (N, X,INCX)

INTEGER icamax
ENTRY icamax (N, X,INCX)

INTEGER N, INCX

complex X(*)

SUBROUTINE F06EPF (N, X,INCX,Y,INCY,C,S)

ENTRY srot (N, X,INCX,Y,INCY,C,S)

INTEGER N, INCX, INCY

real X(*), Y(*), C,S

[NP3390/19/pdf] F06.15

Introduction – F06 F06 – Linear Algebra Support Routines

real FUNCTION F06ERF (NZ, X,INDX,Y)

real sdoti
ENTRY sdoti (NZ, X,INDX,Y)

INTEGER NZ, INDX(*)

real X(*), Y(*)

complex FUNCTION F06GRF (NZ, X,INDX,Y)

complex cdotui
ENTRY cdotui (NZ, X,INDX,Y)

INTEGER NZ, INDX(*)

complex X(*), Y(*)

complex FUNCTION F06GSF (NZ, X,INDX,Y)

complex cdotci
ENTRY cdotci (NZ, X,INDX,Y)

INTEGER NZ, INDX(*)

complex X(*), Y(*)

SUBROUTINE F06ETF (NZ,ALPHA,X,INDX,Y)

ENTRY saxpyi (NZ,ALPHA,X,INDX,Y)

INTEGER NZ, INDX(*)

real ALPHA,X(*), Y(*)

SUBROUTINE F06GTF (NZ,ALPHA,X,INDX,Y)

ENTRY caxpyi (NZ,ALPHA,X,INDX,Y)

INTEGER NZ, INDX(*)

complex ALPHA,X(*), Y(*)

SUBROUTINE F06EUF (NZ, Y, X,INDX)

ENTRY sgthr (NZ, Y, X,INDX)

INTEGER NZ, INDX(*)

real Y(*),X(*)

SUBROUTINE F06GUF (NZ, Y, X,INDX)

ENTRY cgthr (NZ, Y, X,INDX)

INTEGER NZ, INDX(*)

complex Y(*),X(*)

SUBROUTINE F06EVF (NZ, Y, X,INDX)

ENTRY sgthrz (NZ, Y, X,INDX)

INTEGER NZ, INDX(*)

real Y(*),X(*)

SUBROUTINE F06GVF (NZ, Y, X,INDX)

ENTRY cgthrz (NZ, Y, X,INDX)

INTEGER NZ, INDX(*)

complex Y(*),X(*)

SUBROUTINE F06EWF (NZ, X,INDX,Y)

ENTRY ssctr (NZ, X,INDX,Y)

INTEGER NZ, INDX(*)

real X(*), Y(*)

SUBROUTINE F06GWF (NZ, X,INDX,Y)

ENTRY csctr (NZ, X,INDX,Y)

INTEGER NZ, INDX(*)

complex X(*), Y(*)

SUBROUTINE F06EXF (NZ, X,INDX,Y, C,S)

ENTRY sroti (NZ, X,INDX,Y, C,S)

INTEGER NZ, INDX(*)

real X(*),Y(*),C,S

F06.16 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

F06EAF, F06GAF, F06ERF and F06GRF return the dot product xT y.

F06GBF and F06GSF return the dot product xHy, where xH denotes the complex conjugate of xT .

F06ECF, F06GCF, F06ETF and F06GTF perform the operation

y ← αx+ y,

often called an axpy operation.

F06EDF, F06GDF and F06JDF perform the operation

x← αx.

F06EFF, F06GFF, F06EWF and F06GWF perform the operation

y ← x.

F06EGF and F06GGF perform the operation

x⇔ y,

that is x and y are swapped.

F06EJF and F06JJF return the value ‖x‖2 defined by

‖x‖2 =
(

n∑
i=1

|xi|2
)1/2

.

F06EKF returns the value ‖x‖1 defined by

‖x‖1 =
n∑

i=1

|xi|.

F06JKF returns the value asum defined by

asum =
n∑

i=1

(|Re(xi)|+ | Im(xi)|).

F06JLF returns the first index j such that

|xj | = max
i
|xi|.

F06JMF returns the first index j such that

|Re(xj)|+ | Im(xj)| = max
i
(|Re(xi)|+ | Im(xi)|).

F06EPF and F06EXF performs the plane rotation(
xT

yT

)
←
(

c s
−s c

)(
xT

yT

)
.

F06EUF and F06GUF perform the operation

x← y.

F06EVF and F06GVF perform the operations

x← y
y ← 0.

[NP3390/19/pdf] F06.17

Introduction – F06 F06 – Linear Algebra Support Routines

4.2.2 The F06 Level-1 vector routines

real FUNCTION F06FAF (N,J,TOLX,X, INCX,TOLY,Y,INCY)

INTEGER N,J, INCX, INCY

real TOLX,X(*), TOLY,Y(*)

SUBROUTINE F06DBF (N,CONST, X, INCX)

INTEGER N, INCX

INTEGER CONST, X(*)

SUBROUTINE F06FBF (N,CONST, X, INCX)

INTEGER N, INCX

real CONST, X(*)

SUBROUTINE F06HBF (N,CONST, X, INCX)

INTEGER N, INCX

complex CONST, X(*)

SUBROUTINE F06FCF (N,D,INCD,X, INCX)

INTEGER N, INCD, INCX

real D(*), X(*)

SUBROUTINE F06HCF (N,D,INCD,X, INCX)

INTEGER N, INCD, INCX

complex D(*), X(*)

SUBROUTINE F06KCF (N,D,INCD,X, INCX)

INTEGER N, INCD, INCX

real D(*)

complex X(*)

SUBROUTINE F06FDF (N,ALPHA, X, INCX,Y,INCY)

INTEGER N, INCX, INCY

real ALPHA, X(*), Y(*)

SUBROUTINE F06HDF (N,ALPHA, X, INCX,Y,INCY)

INTEGER N, INCX, INCY

complex ALPHA, X(*), Y(*)

SUBROUTINE F06KDF (N,ALPHA, X, INCX,Y,INCY)

INTEGER N, INCX, INCY

real ALPHA

complex X(*), Y(*)

SUBROUTINE F06DFF (N, X, INCX,Y,INCY)

INTEGER N, INCX, INCY

INTEGER X(*), Y(*)

SUBROUTINE F06KFF (N, X, INCX,Y,INCY)

INTEGER N, INCX, INCY

real X(*)

complex Y(*)

SUBROUTINE F06FGF (N, X, INCX)

INTEGER N, INCX

real X(*)

SUBROUTINE F06HGF (N, X, INCX)

INTEGER N, INCX

complex X(*)

F06.18 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

SUBROUTINE F06FJF (N, X, INCX,SCALE,SUMSQ)

INTEGER N, INCX

real X(*), SCALE,SUMSQ

SUBROUTINE F06KJF (N, X, INCX,SCALE,SUMSQ)

INTEGER N, INCX

complex X(*)

real SCALE,SUMSQ

real FUNCTION F06FKF (N,D,INCD,X, INCX)

INTEGER N, INCD, INCX

real D(*), X(*)

SUBROUTINE F06FLF (N, X, INCX,XMAX,XMIN)

INTEGER N, INCX

real X(*), XMAX,XMIN

INTEGER FUNCTION F06KLF (N, X, INCX,TOL)

INTEGER N, INCX

real X(*), TOL

SUBROUTINE F06FPF (N, X, INCX,Y,INCY,C,S)

INTEGER N, INCX, INCY

real X(*), Y(*), C,S

SUBROUTINE F06HPF (N, X, INCX,Y,INCY,C,S)

INTEGER N, INCX, INCY

complex X(*), Y(*), C,S

SUBROUTINE F06KPF (N, X, INCX,Y,INCY,C,S)

INTEGER N, INCX, INCY

complex X(*), Y(*)

real C,S

SUBROUTINE F06FQF (PIVOT,DIRECT,N,ALPHA,X,INCX,C, S)

CHARACTER*1 PIVOT,DIRECT

INTEGER N, INCX

real ALPHA,X(*), C(*),S(*)

SUBROUTINE F06HQF (PIVOT,DIRECT,N,ALPHA,X,INCX,C, S)

CHARACTER*1 PIVOT,DIRECT

INTEGER N, INCX

complex ALPHA,X(*), S(*)

real C(*)

SUBROUTINE F06FRF (N,ALPHA,X,INCX,TOL,ZETA)

INTEGER N, INCX

real ALPHA,X(*), TOL,ZETA

SUBROUTINE F06HRF (N,ALPHA,X,INCX,TOL,THETA)

INTEGER N, INCX

complex ALPHA,X(*), THETA

real TOL

SUBROUTINE F06FSF (N,ALPHA,X,INCX,TOL,Z1)

INTEGER N, INCX

real ALPHA,X(*), TOL,Z1

SUBROUTINE F06FTF (N,DELTA,Y,INCY,ZETA, Z,INCZ)

INTEGER N, INCY, INCZ

real DELTA,Y(*), ZETA, Z(*)

SUBROUTINE F06HTF (N,DELTA,Y,INCY,THETA,Z,INCZ)

INTEGER N, INCY, INCZ

complex DELTA,Y(*), THETA,Z(*)

[NP3390/19/pdf] F06.19

Introduction – F06 F06 – Linear Algebra Support Routines

SUBROUTINE F06FUF (N,Z,INCZ,ZETA,DELTA,Y,INCY)

INTEGER N, INCZ, INCY

real Z(*), ZETA,DELTA,Y(*)

F06FAF returns the value of the cosine of the angle between the vectors x and y, defined as

F06FAF =
xT y

‖x‖2‖y‖2
,

where ‖x‖2 =
√
xTx. If the input argument J is such that 1 ≤ J ≤ N then y is taken as

y = eJ, 1 ≤ J ≤ N,

where eJ is the Jth column of the unit matrix and in this case Y is not referenced. If ‖x‖2 ≤ TOLX then
F06FAF is returned as 2.0 and if ‖x‖2 ≤ TOLY then F06FAF is returned as -2.0, otherwise F06FAF is
returned in the range [−1.0, 1.0]. If either TOLX or TOLY are negative then zero is used in place of the
respective tolerance.

F06DBF, F06FBF and F06HBF perform the operation

x← αe,

where e is the vector eT = (11 . . . 1).

F06FCF, F06HCF and F06KCF perform the operation

x← Dx,

where D is a diagonal matrix, D = diag(di).

F06FDF, F06HDF and F06KDF perform the operation

y ← αx.

F06DFF and F06KFF perform the operation

y ← x.

F06FGF and F06HGF perform the operation

x← −x.

F06FJF and F06KJF return the values scl and ssq given by

scl2.ssq = scale2.sumsq + ‖x‖2,

where for F06FJF,
‖x‖22 = xTx = x2

1 + x2
2 + . . .+ x2

n

and for F06KJF,
‖x‖22 = xHx = |x1|2 + |x2|2 + . . .+ |xn|2.

The values of scl and ssq are overwritten on scale and sumsq, and either of these routines can be
followed by routine F06BMF to compute the value scale.

√
sumsq. These routines are intended for the

safe computation of the Euclidean lengths of vectors and matrices. Before entry, scale and sumsq are
assumed to satisfy

0 ≤ scale, 1 ≤ sumsq.

On exit from F06FJF, scl and ssq will then satisfy,

scl = max
i
(scale, |xi|), 1 ≤ ssq ≤ sumsq + n

and from F06KJF,

scl = max
i
(scale, |Re(xi)|, | Im(xi)|), 1 ≤ ssq ≤ sumsq + 2n.

F06.20 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

F06FKF returns the weighted Euclidean length ‖xD‖ defined as

‖xD‖ = ‖D1/2x‖2 =
(

n∑
i=1

dix
2
i

)1/2

where D is the diagonal matrix D = diag(di). The elements of D must satisfy di ≥ 0.
F06FLF returns the values xmax and xmin given by

xmax = max
i
|xi|, xmin = min

i
|xi|.

F06KLF returns the value (k − 1), where k is the smallest integer for which

|xk| ≤ tol.max(|x1|, |x2|, . . . , |xk−1|).

If no such k exists then F06KLF returns the value n. If tol is less than zero on entry, then the value eps,
where eps is the machine precision, is used in place of tol. Note that tol is unchanged on exit. Note
also that k is the index of the first negligible element in x and that k = 1 only if x1 = 0.

F06FPF performs the symmetric plane rotation(
xT

yT

)
←
(

c s
s −c

)(
xT

yT

)
.

F06HPF performs the plane rotation(
xT

yT

)
←
(

c s
−s̄ c̄

)(
xT

yT

)
.

Note that this differs slightly from the form given in equation (9).

F06KPF performs the plane rotation(
xT

yT

)
←
(

c s
−s c

)(
xT

yT

)
.

where x and y are complex, but c and s are real.

F06FQF and F06HQF generate the parameters of a sequence of plane rotations. Denoting the product
of the plane rotation matrices by P , the matrix P is such that(

α
0

)
← P

(
α
x

)
,

when PIVOT = ’F’ and DIRECT = ’F’, or when PIVOT = ’V’ and DIRECT = ’B’, and(
0
α

)
← P

(
x
α

)
,

when PIVOT = ’F’ and DIRECT = ’B’, or when PIVOT = ’V’ and DIRECT = ’F’.

When PIVOT = ’F’ (Fixed pivot) and DIRECT = ’F’ (Forward sequence) then P is given as the sequence

P = Pn, Pn−1, . . . , P1,

where Pk is a plane rotation matrix for the (1, k + 1) plane designed to annihilate the kth element of x.

When PIVOT = ’V’ (Variable pivot) and DIRECT = ’B’ or ’b’ (Backward sequence) then P is given as
the sequence

P = P1, P2, . . . , Pn,

where Pk is a plane rotation matrix for the (k, k + 1) plane designed to annihilate the kth element of x.

When PIVOT = ’F’ and DIRECT = ’B’ then P is given as the sequence

P = P1, P2, . . . , Pn,

[NP3390/19/pdf] F06.21

Introduction – F06 F06 – Linear Algebra Support Routines

where Pk is a plane rotation matrix of the (k, n− 1) plane designed to annihilate the kth element of x.

When PIVOT = ’V’ and DIRECT = ’F’ then P is given as the sequence

P = Pn, Pn−1, . . . , P1,

where Pk is a plane rotation matrix of the (k, k + 1) plane designed to annihilate the kth element of x.

The two by two plane rotation part of Pk has the form given by equation (1) for F06FQF and (10) (with
c real) for F06HQF. The cosine and sine that define Pk are returned in C(k) and S(k) respectively and
the tangent, tk = S(k)/C(k), is overwritten on the element of X corresponding to xk.

Note that for routine F06HQF, if the imaginary part of α is supplied as zero, then the imaginary part of
α will also be zero on return.

F06HRF generates the parameters θ and z of a complex Householder transformation as described in
Section 2.2.4. The elements of z are overwritten on x and β is overwritten on α. Note that Im(β) = 0.
If x is such that

max
i
(|Re(xi)|, | Im(xi)|) ≤ max(eps.max(|Re(α)|, | Im(α)|), tol),

where eps is the machine precision, then θ is returned such that Re(θ) ≤ 0, as described at the end
of Section 2.2.4, otherwise θ is such that

θ = ζ + i. Im(µ), i =
√
−1

with
1 ≤ ζ ≤

√
2.

F06FSF generates the parameters ζ and z of a real Householder transformation of the form (14), where
µ satisfies (15). The elements of z are overwritten on x and β is overwritten on α. If the elements of x
are all zero or are all less than tol.|α|, then ζ is returned as zero, otherwise ζ satisfies

1 ≤ ζ ≤ 2.

If tol is outside the range [0, 1], then the value zero is used in place of tol, but tol is unchanged on exit.

F06FRF generates the parameters ζ and z of a real Householder transformation of the form (14), where
µ satisfies (16). The elements of z are overwritten on x and β is overwritten on α. If the elements x
satisfy

max
i
|xi| ≤ max(eps.|α|, tol),

where eps is the machine precision, then ζ is returned as zero, otherwise ζ satisfies

1 ≤ ζ ≤
√
2.

F06FUF, F06FTF and F06HTF perform elementary reflections given by(
δ
y

)
← P

(
δ
y

)
,

where P is an elementary reflector. F06FUF is intended for use in conjunction with routine F06FSF,
and F06FTF and F06HTF are intended for use in conjunction with routines F06FRF and F06HRF
respectively. Note that F06HTF can be used to perform the transformation(

δ
y

)
← PH

(
δ
y

)
,

by calling F06HTF with CONJG(THETA) in place of THETA.

F06.22 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

4.3 The Level-2 Matrix-vector Routines

The matrix-vector routines all have one array argument representing a matrix; usually this is a two-
dimensional array but in some cases the matrix is represented by a one-dimensional array.

The size of the matrix is determined by the arguments M and N for an m by n rectangular matrix; and
by the argument N for an n by n symmetric, Hermitian, or triangular matrix. Note that it is permissible
to call the routines with M or N = 0, in which case the routines exit immediately without referencing
their array arguments. For band matrices, the bandwidth is determined by the arguments KL and KU
for a rectangular matrix with kl sub-diagonals and ku super-diagonals; and by the argument K for a
symmetric, Hermitian, or triangular matrix with k sub-diagonals and/or super-diagonals.

The description of the matrix consists either of the array name (A) followed by the first dimension of the
array as declared in the calling (sub)program (LDA), when the matrix is being stored in a two-dimensional
array; or the array name (AP) alone when the matrix is being stored as a (packed) vector. In the former
case the actual array must contain at least ((n− 1)d+ l) elements, where d is the first dimension of the
array, d ≥ l, and l = m for arrays representing general matrices, l = n for arrays representing symmetric,
Hermitian and triangular matrices, l = kl + ku + 1 for arrays representing general band matrices and
l = k+1 for symmetric, Hermitian and triangular band matrices. For one-dimensional arrays representing
matrices (packed storage) the actual array must contain at least 1

2n(n+ 1) elements.

You may wish to be aware that Chapter F01 provides some utility routines for conversion between storage
formats. (See Section 3.3.)

As with the vector routines, vectors are represented by one-dimensional arrays together with a
corresponding increment argument (see Section 4.2). The only difference is that for these routines a
zero increment is not permitted.

When the vector x consists of k elements then the declared length of the array X in the calling
(sub)program must be at least (1 + (k − 1) ∗ |INCX|).
The arguments that specify options are character arguments with the names TRANS, UPLO and DIAG.
TRANS is used by the matrix-vector product routines as follows:

Value Meaning

’N’ Operate with the matrix

’T’ Operate with the transpose of the matrix

’C’ Operate with the conjugate transpose of the matrix

In the real case the values ’T’, ’t’, ’C’ and ’c’ have the same meaning.

UPLO is used by the Hermitian, symmetric, and triangular matrix routines to specify whether the upper
or lower triangle is being referenced as follows:

Value Meaning

’U’ Upper triangle

’L’ Lower triangle

DIAG is used by the triangular matrix routines to specify whether or not the matrix is unit triangular,
as follows:

Value Meaning

’U’ Unit triangular

’N’ Non-unit triangular

When DIAG is supplied as ’U’ the diagonal elements are not referenced.

It is worth noting that actual character arguments in Fortran may be longer than the corresponding
dummy arguments. So that, for example, the value ’T’ for TRANS may be passed as ‘TRANSPOSE’.

The routines for real symmetric and complex Hermitian matrices allow for the matrix to be stored in
either the upper (UPLO = ’U’) or lower triangle (UPLO = ’L’) of a two-dimensional array, or to be
packed in a one-dimensional array. In the latter case the upper triangle may be packed sequentially
column by column (UPLO = ’U’), or the lower triangle may be packed sequentially column by column

[NP3390/19/pdf] F06.23

Introduction – F06 F06 – Linear Algebra Support Routines

(UPLO = ’L’). Note that for real symmetric matrices packing the upper triangle by column is equivalent
to packing the lower triangle by rows, and packing the lower triangle by columns is equivalent to packing
the upper triangle by rows. (For complex Hermitian matrices the only difference is that the off-diagonal
elements are conjugated.)

For triangular matrices the argument UPLO serves to define whether the matrix is upper (UPLO = ’U’)
or lower (UPLO = ’L’) triangular. In packed storage the triangle has to be packed by column.

The band matrix routines allow storage so that the jth column of the matrix is stored in the jth column
of the Fortran array. For a general band matrix the diagonal of the matrix is stored in the (ku + 1)th
row of the array. For a Hermitian or symmetric matrix either the upper triangle (UPLO = ’U’) may be
stored in which case the leading diagonal is in the (k+1)th row of the array, or the lower triangle (UPLO
= ’L’) may be stored in which case the leading diagonal is in the first row of the array. For an upper
triangular band matrix (UPLO = ’U’) the leading diagonal is in the (k+ 1)th row of the array and for a
lower triangular band matrix (UPLO = ’L’) the leading diagonal is in the first row.

For a Hermitian matrix the imaginary parts of the diagonal elements are of course zero and thus the
imaginary parts of the corresponding Fortran array elements need not be set, but are assumed to be zero.

For packed triangular matrices the same storage layout is used whether or not DIAG = ’U’, i.e., space is
left for the diagonal elements even if those array elements are not referenced.

Throughout the following sections AH denotes the complex conjugate of AT .

4.3.1 The Level-2 BLAS matrix-vector routines

SUBROUTINE F06PAF (TRANS,M,N, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

ENTRY sgemv (TRANS,M,N, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

CHARACTER*1 TRANS

INTEGER M,N, LDA, INCX, INCY

real ALPHA,A(LDA,*),X(*), BETA,Y(*)

SUBROUTINE F06SAF (TRANS,M,N, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

ENTRY cgemv (TRANS,M,N, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

CHARACTER*1 TRANS

INTEGER M,N, LDA, INCX, INCY

complex ALPHA,A(LDA,*),X(*), BETA,Y(*)

SUBROUTINE F06PBF (TRANS,M,N,KL,KU,ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

ENTRY sgbmv (TRANS,M,N,KL,KU,ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

CHARACTER*1 TRANS

INTEGER M,N,KL,KU, LDA, INCX, INCY

real ALPHA,A(LDA,*),X(*), BETA,Y(*)

SUBROUTINE F06SBF (TRANS,M,N,KL,KU,ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

ENTRY cgbmv (TRANS,M,N,KL,KU,ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

CHARACTER*1 TRANS

INTEGER M,N,KL,KU, LDA, INCX, INCY

complex ALPHA,A(LDA,*),X(*), BETA,Y(*)

SUBROUTINE F06PCF (UPLO, N, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

ENTRY ssymv (UPLO, N, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

CHARACTER*1 UPLO

INTEGER N, LDA, INCX, INCY

real ALPHA,A(LDA,*),X(*), BETA,Y(*)

SUBROUTINE F06SCF (UPLO, N, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

ENTRY chemv (UPLO, N, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

CHARACTER*1 UPLO

INTEGER N, LDA, INCX, INCY

complex ALPHA,A(LDA,*),X(*), BETA,Y(*)

F06.24 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

SUBROUTINE F06PDF (UPLO, N,K, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

ENTRY ssbmv (UPLO, N,K, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

CHARACTER*1 UPLO

INTEGER N,K, LDA, INCX, INCY

real ALPHA,A(LDA,*),X(*), BETA,Y(*)

SUBROUTINE F06SDF (UPLO, N,K, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

ENTRY chbmv (UPLO, N,K, ALPHA,A,LDA, X,INCX,BETA,Y,INCY)

CHARACTER*1 UPLO

INTEGER N,K, LDA, INCX, INCY

complex ALPHA,A(LDA,*),X(*), BETA,Y(*)

SUBROUTINE F06PEF (UPLO, N, ALPHA,AP, X,INCX,BETA,Y,INCY)

ENTRY sspmv (UPLO, N, ALPHA,AP, X,INCX,BETA,Y,INCY)

CHARACTER*1 UPLO

INTEGER N, INCX, INCY

real ALPHA,AP(*), X(*), BETA,Y(*)

SUBROUTINE F06SEF (UPLO, N, ALPHA,AP, X,INCX,BETA,Y,INCY)

ENTRY chpmv (UPLO, N, ALPHA,AP, X,INCX,BETA,Y,INCY)

CHARACTER*1 UPLO

INTEGER N, INCX, INCY

complex ALPHA,AP(*), X(*), BETA,Y(*)

SUBROUTINE F06PFF (UPLO,TRANS,DIAG,N, A,LDA, X,INCX)

ENTRY strmv (UPLO,TRANS,DIAG,N, A,LDA, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N, LDA, INCX

real A(LDA,*),X(*)

SUBROUTINE F06SFF (UPLO,TRANS,DIAG,N, A,LDA, X,INCX)

ENTRY ctrmv (UPLO,TRANS,DIAG,N, A,LDA, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N, LDA, INCX

complex A(LDA,*),X(*)

SUBROUTINE F06PGF (UPLO,TRANS,DIAG,N,K, A,LDA, X,INCX)

ENTRY stbmv (UPLO,TRANS,DIAG,N,K, A,LDA, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N,K, LDA, INCX

real A(LDA,*),X(*)

SUBROUTINE F06SGF (UPLO,TRANS,DIAG,N,K, A,LDA, X,INCX)

ENTRY ctbmv (UPLO,TRANS,DIAG,N,K, A,LDA, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N,K, LDA, INCX

complex A(LDA,*),X(*)

SUBROUTINE F06PHF (UPLO,TRANS,DIAG,N, AP, X,INCX)

ENTRY stpmv (UPLO,TRANS,DIAG,N, AP, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N, INCX

real AP(*), X(*)

SUBROUTINE F06SHF (UPLO,TRANS,DIAG,N, AP, X,INCX)

ENTRY ctpmv (UPLO,TRANS,DIAG,N, AP, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N, INCX

complex AP(*), X(*)

[NP3390/19/pdf] F06.25

Introduction – F06 F06 – Linear Algebra Support Routines

SUBROUTINE F06PJF (UPLO,TRANS,DIAG,N, A,LDA, X,INCX)

ENTRY strsv (UPLO,TRANS,DIAG,N, A,LDA, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N, LDA, INCX

real A(LDA,*),X(*)

SUBROUTINE F06SJF (UPLO,TRANS,DIAG,N, A,LDA, X,INCX)

ENTRY ctrsv (UPLO,TRANS,DIAG,N, A,LDA, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N, LDA, INCX

complex A(LDA,*),X(*)

SUBROUTINE F06PKF (UPLO,TRANS,DIAG,N,K, A,LDA, X,INCX)

ENTRY stbsv (UPLO,TRANS,DIAG,N,K, A,LDA, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N,K, LDA, INCX

real A(LDA,*),X(*)

SUBROUTINE F06SKF (UPLO,TRANS,DIAG,N,K, A,LDA, X,INCX)

ENTRY ctbsv (UPLO,TRANS,DIAG,N,K, A,LDA, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N,K, LDA, INCX

complex A(LDA,*),X(*)

SUBROUTINE F06PLF (UPLO,TRANS,DIAG,N, AP, X,INCX)

ENTRY stpsv (UPLO,TRANS,DIAG,N, AP, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N, INCX

real AP(*), X(*)

SUBROUTINE F06SLF (UPLO,TRANS,DIAG,N, AP, X,INCX)

ENTRY ctpsv (UPLO,TRANS,DIAG,N, AP, X,INCX)

CHARACTER*1 UPLO,TRANS,DIAG

INTEGER N, INCX

complex AP(*), X(*)

SUBROUTINE F06PMF (M,N,ALPHA, X,INCX,Y,INCY,A,LDA)

ENTRY sger (M,N,ALPHA, X,INCX,Y,INCY,A,LDA)

INTEGER M,N, INCX, INCY, LDA

real ALPHA, X(*), Y(*), A(LDA,*)

SUBROUTINE F06SMF (M,N,ALPHA, X,INCX,Y,INCY,A,LDA)

ENTRY cgeru (M,N,ALPHA, X,INCX,Y,INCY,A,LDA)

INTEGER M,N, INCX, INCY, LDA

complex ALPHA, X(*), Y(*), A(LDA,*)

SUBROUTINE F06SNF (M,N,ALPHA, X,INCX,Y,INCY,A,LDA)

ENTRY cgerc (M,N,ALPHA, X,INCX,Y,INCY,A,LDA)

INTEGER M,N, INCX, INCY, LDA

complex ALPHA, X(*), Y(*), A(LDA,*)

SUBROUTINE F06PPF (UPLO, N,ALPHA, X,INCX, A,LDA)

ENTRY ssyr (UPLO, N,ALPHA, X,INCX, A,LDA)

CHARACTER*1 UPLO

INTEGER N, INCX, LDA

real ALPHA, X(*), A(LDA,*)

SUBROUTINE F06SPF (UPLO, N,ALPHA, X,INCX, A,LDA)

ENTRY cher (UPLO, N,ALPHA, X,INCX, A,LDA)

CHARACTER*1 UPLO

INTEGER N, INCX, LDA

real ALPHA

complex X(*), A(LDA,*)

F06.26 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

SUBROUTINE F06PQF (UPLO, N,ALPHA, X,INCX, AP)

ENTRY sspr (UPLO, N,ALPHA, X,INCX, AP)

CHARACTER*1 UPLO

INTEGER N, INCX

real ALPHA, X(*), AP(*)

SUBROUTINE F06SQF (UPLO, N,ALPHA, X,INCX, AP)

ENTRY chpr (UPLO, N,ALPHA, X,INCX, AP)

CHARACTER*1 UPLO

INTEGER N, INCX

real ALPHA

complex X(*), AP(*)

SUBROUTINE F06PRF (UPLO, N,ALPHA, X,INCX,Y,INCY,A,LDA)

ENTRY ssyr (UPLO, N,ALPHA, X,INCX,Y,INCY,A,LDA)

CHARACTER*1 UPLO

INTEGER N, INCX, INCY, LDA

real ALPHA, X(*), Y(*), A(LDA,*)

SUBROUTINE F06SRF (UPLO, N,ALPHA, X,INCX,Y,INCY,A,LDA)

ENTRY cher (UPLO, N,ALPHA, X,INCX,Y,INCY,A,LDA)

CHARACTER*1 UPLO

INTEGER N, INCX, INCY, LDA

complex ALPHA, X(*), Y(*), A(LDA,*)

SUBROUTINE F06PSF (UPLO, N,ALPHA, X,INCX,Y,INCY,AP)

ENTRY sspr (UPLO, N,ALPHA, X,INCX,Y,INCY,AP)

CHARACTER*1 UPLO

INTEGER N, INCX, INCY

real ALPHA, X(*), Y(*), AP(*)

SUBROUTINE F06SSF (UPLO, N,ALPHA, X,INCX,Y,INCY,AP)

ENTRY chpr (UPLO, N,ALPHA, X,INCX,Y,INCY,AP)

CHARACTER*1 UPLO

INTEGER N, INCX, INCY

complex ALPHA, X(*), Y(*), AP(*)

F06PAF, F06SAF, F06PBF and F06SBF perform the operation

y ← αAx+ βy, when TRANS = ’N’,
y ← αATx+ βy, when TRANS = ’T’,
y ← αAHx+ βy, when TRANS = ’C’,

where A is a general matrix for F06PAF and F06SAF, and is a general band matrix for F06PBF and
F06SBF.

F06PCF, F06SCF, F06PEF, F06SEF, F06PDF and F06SDF perform the operation

y ← αAx + βy

where A is symmetric and Hermitian for F06PCF and F06SCF respectively, is symmetric and Hermitian
stored in packed form for F06PEF and F06SEF respectively, and is symmetric and Hermitian band for
F06PDF and F06SDF.

F06PFF, F06SFF, F06PHF, F06SHF, F06PGF and F06SGF perform the operation

x← Ax, when TRANS = ’N’,
x← ATx, when TRANS = ’T’,
x← AHx, when TRANS = ’C’,

where A is a triangular matrix for F06PFF and F06SFF, is a triangular matrix stored in packed form for
F06PHF and F06SHF, and is a triangular band matrix for F06PGF and F06SGF.

F06PJF, F06SJF, F06PLF, F06SLF, F06PKF and F06SKF solve the equations

Ax = b, when TRANS = ’N’,
ATx = b, when TRANS = ’T’,
AHx = b, when TRANS = ’C’,

[NP3390/19/pdf] F06.27

Introduction – F06 F06 – Linear Algebra Support Routines

where A is a triangular matrix for F06PJF and F06SJF, is a triangular matrix stored in packed form
for F06PLF and F06SLF, and is a triangular band matrix for F06PKF and F06SKF. The vector b must
be supplied in the array X and is overwritten by the solution. It is important to note that no test for
singularity is included in these routines.

F06PMF and F06SMF perform the operation

A← αxyT +A,

where A is a general matrix.

F06SNF performs the operation
A← αxyH +A,

where A is a general complex matrix.

F06PPF and F06PQF perform the operation

A← αxxT +A,

where A is a symmetric matrix for F06PPF and is a symmetric matrix stored in packed form for F06PQF.

F06SPF and F06SQF perform the operation

A← αxxH +A,

where A is an Hermitian matrix for F06SPF and is an Hermitian matrix stored in packed form for
F06SQF.

F06PRF and F06PSF perform the operation

A← αxyT + αyxT +A,

where A is a symmetric matrix for F06PRF and is a symmetric matrix stored in packed form for F06PSF.

F06SRF and F06SSF perform the operation

A← αxyH + ᾱyxH +A,

where A is an Hermitian matrix for F06SRF and is an Hermitian matrix stored in packed form for
F06SSF.

The following argument values are invalid:

Any value of the character arguments DIAG, TRANS, or UPLO whose meaning is not specified.

M < 0

N < 0

KL < 0

KU < 0

K < 0

LDA < M

LDA < KL + KU + 1

LDA < N for the routines involving full Hermitian, symmetric or triangular matrices

LDA < K+1 for the routines involving band Hermitian, symmetric or triangular matrices

INCX = 0

INCY = 0

If a routine is called with an invalid value then an error message is output, on the error message unit (see
X04AAF), giving the name of the routine and the number of the first invalid argument, and execution is
terminated.

F06.28 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

4.4 The Level-2 Matrix Routines

The matrix routines have either one or two array arguments representing matrices; currently these are
all two-dimensional arrays. When the array name A is used, the conventions for the size and description
of the matrix are as for the matrix-vector routines described in Section 4.3. The alternative array name
is B which is always followed by its first dimension as declared in the calling (sub)program (LDB).

The array B is used either as the second two-dimensional array argument, or to represent a matrix which
is to be multiplied by a sequence of n, m×m permutation matrices. In this case B represents either an
m×k, or a k×m matrix depending upon whether the permutations are to be applied from the left or the
right respectively. n, m and k are represented by the arguments N, M and K. The permutation matrices
are represented by a single one-dimensional array argument PERM, which is either an integer or a real
array.

Many of the routines in this section are concerned with applying sequences of plane rotations to matrices.
For all these routines the sequence of plane rotations is represented by two one-dimensional array
arguments, C and S, defining the cosines and sines respectively for each plane rotation (see Section
2.2.1 and Section 2.2.2). In most cases the plane rotations can be restricted to planes k1 through to k2
(1 ≤ k1 ≤ k2 ≤ m or n) defined by the integer arguments K1 and K2. If any of the above inequalities do
not hold, then an immediate return is effected. In the descriptions PH denotes the complex conjugate of
PT .

Vectors are again represented by one-dimensional array arguments (X or Y) together with a corresponding
increment argument (INCX or INCY), which for the routines in this section must be positive.

The character arguments UPLO and TRANS have the same meaning as described in Section 4.3.
Additionally five other character arguments are used to specify options in this section, with the names
SIDE, PIVOT, DIRECT, NORM and MATRIX. SIDE is used by the permutation routines and many of
the plane rotation routines as follows:

Value Meaning

’L’ operate on the left-hand side

’R’ operate on the right-hand side

PIVOT and DIRECT are used together by some of the plane rotation routines. PIVOT is used as follows:

Value Meaning

’B’ bottom (fixed) pivot

’T’ top (fixed) pivot

’V’ variable pivot

and DIRECT is used as follows:

Value Meaning

’B’ backward sequence

’F’ forward sequence

NORM is used by the routines that return the norm of a matrix as follows:

Value Meaning

’M’ max
i,j
|ai,j | (element of maximum absolute value. Not strictly a norm)

’1’ or ’O’ ‖A‖1 (one norm of a matrix)

’I’ ‖A‖∞ (infinity norm of a matrix)

’F’ or ’E’ ‖A‖F (Frobenius or Euclidean norm of a matrix)

MATRIX is used by some of the routines to determine the type of matrix represented by the corresponding
array argument as follows:

[NP3390/19/pdf] F06.29

Introduction – F06 F06 – Linear Algebra Support Routines

Value Meaning

’G’ general (rectangular or square) matrix

’U’ upper trapezoidal or triangular matrix

’L’ lower trapezoidal or triangular matrix

For the following routines, WORK must be an array of length M when NORM = ’I’, and an array of
length 1 otherwise:

F06RAF F06RJF F06UAF F06UJF

For the following routines, WORK must be an array of length N when NORM = ’I’, and an array of
length 1 otherwise:

F06RBF F06RKF F06RLF F06RMF F06UBF F06UKF
F06ULF F06UMF

For the following routines, WORK must be an array of length N when NORM = ’I’, ’l’ or ’O’, and an
array of length 1 otherwise:

F06RCF F06RDF F06REF F06UCF F06UDF F06UEF
F06UFF F06UGF F06UHF

4.4.1 The F06 Level-2 matrix routines

SUBROUTINE F06QFF (MATRIX,M,N, A,LDA, B,LDB)

CHARACTER*1 MATRIX

INTEGER M,N, LDA, LDB

real A(LDA,*),B(LDB,*)

SUBROUTINE F06TFF (MATRIX,M,N, A,LDA, B,LDB)

CHARACTER*1 MATRIX

INTEGER M,N, LDA, LDB

complex A(LDA,*),B(LDB,*)

SUBROUTINE F06QHF (MATRIX,M,N,CONST,DIAG,A,LDA)

CHARACTER*1 MATRIX

INTEGER M,N, LDA

real CONST,DIAG,A(LDA,*)

SUBROUTINE F06THF (MATRIX,M,N,CONST,DIAG,A,LDA)

CHARACTER*1 MATRIX

INTEGER M,N, LDA

complex CONST,DIAG,A(LDA,*)

SUBROUTINE F06QJF (SIDE,TRANS,N,PERM, K,B,LDB)

CHARACTER*1 SIDE,TRANS

INTEGER N,PERM(*),K, LDB

real B(LDB,*)

SUBROUTINE F06VJF (SIDE,TRANS,N,PERM, K,B,LDB)

CHARACTER*1 SIDE,TRANS

INTEGER N,PERM(*),K, LDB

complex B(LDB,*)

SUBROUTINE F06QKF (SIDE,TRANS,N,PERM, K,B,LDB)

CHARACTER*1 SIDE,TRANS

INTEGER N, K, LDB

real PERM(*), B(LDB,*)

F06.30 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

SUBROUTINE F06VKF (SIDE,TRANS,N,PERM, K,B,LDB)

CHARACTER*1 SIDE,TRANS

INTEGER N, K, LDB

real PERM(*)

complex B(LDB,*)

SUBROUTINE F06QMF (UPLO,PIVOT,DIRECT,N,K1,K2,C, S, A,LDA)

CHARACTER*1 UPLO,PIVOT,DIRECT

INTEGER N,K1,K2, LDA

real C(*),S(*),A(LDA,*)

SUBROUTINE F06TMF (UPLO,PIVOT,DIRECT,N,K1,K2,C, S, A,LDA)

CHARACTER*1 UPLO,PIVOT,DIRECT

INTEGER N,K1,K2, LDA

real C(*)

complex S(*),A(LDA,*)

SUBROUTINE F06QPF (N,ALPHA,X,INCX,Y,INCY,A,LDA, C, S)

INTEGER N, INCX, INCY, LDA

real ALPHA,X(*), Y(*), A(LDA,*),C(*),S(*)

SUBROUTINE F06TPF (N,ALPHA,X,INCX,Y,INCY,A,LDA, C, S)

INTEGER N, INCX, INCY, LDA

complex ALPHA,X(*), Y(*), A(LDA,*), S(*)

real C(*)

SUBROUTINE F06QQF (N,ALPHA,X,INCX, A,LDA, C, S)

INTEGER N, INCX, LDA

real ALPHA,X(*), A(LDA,*),C(*),S(*)

SUBROUTINE F06TQF (N,ALPHA,X,INCX, A,LDA, C, S)

INTEGER N, INCX, LDA

complex ALPHA,X(*), A(LDA,*), S(*)

real C(*)

SUBROUTINE F06QRF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

real C(*),S(*),A(LDA,*)

SUBROUTINE F06TRF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

complex C(*), A(LDA,*)

real S(*)

SUBROUTINE F06QSF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

real C(*),S(*),A(LDA,*)

SUBROUTINE F06TSF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

real C(*)

complex S(*),A(LDA,*)

SUBROUTINE F06QTF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

real C(*),S(*),A(LDA,*)

[NP3390/19/pdf] F06.31

Introduction – F06 F06 – Linear Algebra Support Routines

SUBROUTINE F06TTF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

real C(*)

complex S(*),A(LDA,*)

SUBROUTINE F06QVF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

real C(*),S(*),A(LDA,*)

SUBROUTINE F06TVF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

complex C(*), A(LDA,*)

real S(*)

SUBROUTINE F06QWF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

real C(*),S(*),A(LDA,*)

SUBROUTINE F06TWF (SIDE, N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE

INTEGER N,K1,K2, LDA

real C(*)

complex S(*),A(LDA,*)

SUBROUTINE F06QXF (SIDE,PIVOT,DIRECT,M,N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE,PIVOT,DIRECT

INTEGER M,N,K1,K2, LDA

real C(*),S(*),A(LDA,*)

SUBROUTINE F06TXF (SIDE,PIVOT,DIRECT,M,N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE,PIVOT,DIRECT

INTEGER M,N,K1,K2, LDA

real C(*)

complex S(*),A(LDA,*)

SUBROUTINE F06VXF (SIDE,PIVOT,DIRECT,M,N,K1,K2,C,S, A,LDA)

CHARACTER*1 SIDE,PIVOT,DIRECT

INTEGER M,N,K1,K2,LDA

real C(*),S(*)

complex A(LDA,*)

SUBROUTINE F06TYF (SIDE,PIVOT,DIRECT,M,N,K1,K2,C, S, A,LDA)

CHARACTER*1 SIDE,PIVOT,DIRECT

INTEGER M,N,K1,K2, LDA

complex C(*), A(LDA,*)

real S(*)

real FUNCTION F06RAF (NORM,M,N, A,LDA, WORK)

CHARACTER*1 NORM

INTEGER M,N, LDA

real A(LDA,*), WORK(*)

real FUNCTION F06RBF (NORM,N,KL,KU, A,LDA, WORK)

CHARACTER*1 NORM

INTEGER N,KL,KU, LDA

real A(LDA,*), WORK(*)

real FUNCTION F06RCF (NORM,UPLO,N, A,LDA, WORK)

CHARACTER*1 NORM,UPLO

INTEGER N, LDA

real A(LDA,*), WORK(*)

F06.32 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

real FUNCTION F06RDF (NORM,UPLO,N, AP, WORK)

CHARACTER*1 NORM,UPLO

INTEGER N

real AP(*), WORK(*)

real FUNCTION F06REF (NORM,UPLO,N,K, A,LDA, WORK)

CHARACTER*1 NORM,UPLO

INTEGER N,K, LDA

real A(LDA,*), WORK(*)

real FUNCTION F06RJF (NORM,UPLO,DIAG,M,N,A,LDA, WORK)

CHARACTER*1 NORM,UPLO,DIAG

INTEGER M,N, LDA

real A(LDA,*), WORK(*)

real FUNCTION F06RKF (NORM,UPLO,DIAG, N,AP, WORK)

CHARACTER*1 NORM,UPLO,DIAG

INTEGER N

real AP(*), WORK(*)

real FUNCTION F06RLF (NORM,UPLO,DIAG, N,K,A,LDA, WORK)

CHARACTER*1 NORM,UPLO,DIAG

INTEGER N,K, LDA

real A(LDA,*),WORK(*)

real FUNCTION F06RMF (NORM, N, A,LDA, WORK)

CHARACTER*1 NORM

INTEGER N, LDA

real A(LDA,*),WORK(*)

real FUNCTION F06UAF (NORM, M,N, A,LDA, WORK)

CHARACTER*1 NORM

INTEGER M,N

real WORK(*)

complex A(LDA,*)

real FUNCTION F06UBF (NORM, N,KL,KU,A,LDA,WORK)

CHARACTER*1 NORM

INTEGER N,KL,KU, LDA

real WORK(*)

complex A(LDA,*)

real FUNCTION F06UCF (NORM,UPLO, N, A,LDA,WORK)

CHARACTER*1 NORM,UPLO

INTEGER N, LDA

real WORK(*)

complex A(LDA,*)

real FUNCTION F06UDF (NORM,UPLO, N, AP, WORK)

CHARACTER*1 NORM,UPLO

INTEGER N

real WORK(*)

complex AP(*)

real FUNCTION F06UEF (NORM,UPLO, N,K, A,LDA,WORK)

CHARACTER*1 NORM,UPLO

INTEGER N,K, LDA

real WORK(*)

complex A(LDA,*)

[NP3390/19/pdf] F06.33

Introduction – F06 F06 – Linear Algebra Support Routines

real FUNCTION F06UFF (NORM,UPLO, N, A,LDA,WORK)

CHARACTER*1 NORM,UPLO

INTEGER N, LDA

real WORK(*)

complex A(LDA,*)

real FUNCTION F06UGF (NORM,UPLO, N, AP, WORK)

CHARACTER*1 NORM,UPLO

INTEGER N

real WORK(*)

complex AP(*)

real FUNCTION F06UHF (NORM,UPLO, N,K, A,LDA,WORK)

CHARACTER*1 NORM,UPLO

INTEGER N,K, LDA

real WORK(*)

complex A(LDA,*)

real FUNCTION F06UJF (NORM,UPLO,DIAG,M,N, A,LDA,WORK)

CHARACTER*1 NORM,UPLO,DIAG

INTEGER M,N, LDA

real WORK(*)

complex A(LDA,*)

real FUNCTION F06UKF (NORM,UPLO,DIAG, N, AP, WORK)

CHARACTER*1 NORM,UPLO,DIAG

INTEGER N

real WORK(*)

complex AP(*)

real FUNCTION F06ULF (NORM,UPLO,DIAG, N,K, A,LDA,WORK)

CHARACTER*1 NORM,UPLO,DIAG

INTEGER N,K, LDA

real WORK(*)

complex A(LDA,*)

real FUNCTION F06UMF (NORM, N, A,LDA,WORK)

CHARACTER*1 NORM

INTEGER N, LDA

real WORK(*)

complex A(LDA,*)

F06QFF and F06TFF perform the operation

B ← A

where A and B are m × n general (rectangular or square), or upper or lower trapezoidal or triangular
matrices.

F06RAF, F06UAF, F06RBF, F06UBF, F06RCF, F06UCF, F06RDF, F06UDF, F06REF, F06UEF,
F06RJF, F06UJF, F06RKF, F06UKF, F06RLF, F06ULF, F06RMF, F06UMF, F06UFF, F06UGF and
F06UHF return one of the values amax or ‖A‖1 or ‖A‖∞ or ‖A‖F given by

amax = max
i,j
|aij |,

‖A‖1 = max
j

m∑
i=1

|aij |,

‖A‖∞ = max
i

n∑
j=1

|aij |,

‖A‖F =

 m∑

i=1

n∑
j=1

|aij |2

1/2

,

F06.34 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

where A is either an m×n general rectangular or upper or lower trapezoidal matrix, or a square (m = n)
band or symmetric or Hermitian or Hessenberg or upper or lower triangular matrix, or a combination
of these (e.g. Hermitian band). When A is symmetric or Hermitian or triangular it may be supplied in
packed form.

F06QHF and F06THF perform the operation

aij ←
{

diag, i = j
const, i �= j

where A is an m× n general (rectangular or square), or upper or lower trapezoidal or triangular matrix.

F06QJF, F06VJF, F06QKF and F06VKF perform one of the operations

B ← PB when SIDE = ’L’ and TRANS = ’N’,
B ← PTB when SIDE = ’L’ and TRANS = ’T’,
B ← BP when SIDE = ’R’ and TRANS = ’N’,
B ← BPT when SIDE = ’R’ and TRANS = ’T’,

where P is an m×m permutation matrix of the form

P = P1,i1
P2,i2

. . . Pn,in
,

Pj,ij
being the permutation matrix that interchanges items j and ij. That is, Pj,ij

is the unit matrix
with rows and columns j and ij interchanged. If j = ij then P = I. ij must satisfy 1 ≤ ij ≤ m. Pj,ij

is
represented by the jth element of the argument PERM such that PERM(j) = ij .

When SIDE = ’L’, B is an m × k matrix and when SIDE = ’R’, B is a k ×m matrix. Note that m is
not actually an argument of these routines.

F06QMF and F06TMF perform the operations

A← PAPT for F06QMF and

A← PAPH for F06TMF,

where A is an n × n symmetric (Hermitian for F06TMF) matrix and P is an orthogonal (unitary for
F06TMF) matrix consisting of a sequence of plane rotations, applied in planes k1 to k2. When DIRECT
= ’F’ then P is given by the sequence

P = Pk2−1, . . . , Pk1+1, Pk1

and when DIRECT = ’B’ then P is given by the sequence

P = Pk1, Pk1+1, . . . , Pk2−1,

where Pk is a plane rotation matrix for the (k, k + 1) plane when PIVOT = ’V’, Pk is a plane rotation
matrix for the (k1, k + 1) plane when PIVOT = ’T’ and Pk is a plane rotation matrix for the (k, k2)
plane when PIVOT = ’B’ or ’b’.

The two by two part of the plane rotations are assumed to be of the form given by equation (1) for
F06QMF and (10) (with c real) for F06TMF. The cosine and sine that define Pk must be supplied in
C(k) and S(k) respectively.

F06QPF and F06TPF perform the factorization

αxyT + U = QR,

where α is a scalar, x and y are n element vectors, U and R are n× upper triangular matrices and Q
is an n× n orthogonal (unitary for F06TPF) matrix. For F06TPF, U must have real diagonal elements
and R is returned with real diagonal elements. Q is formed as two sequences of plane rotations, P and
S. P is a sequence of the form

P = P1, P2, . . . , Pn−1,

where Pk is a rotation for the (k, n) plane, chosen so that

Px = βen,

[NP3390/19/pdf] F06.35

Introduction – F06 F06 – Linear Algebra Support Routines

en being the last column of the unit matrix. S is a sequence of the form

S = Sn−1, Sn−2, . . . , S1,

where Sk is a rotation for the (k, n) plane, chosen so that

S(αβeny
T + PU) = R

Q is given as

QT = SP for F06QPF and as

QH = DSP for F06TPF,

where D is a unitary diagonal matrix with a non-unit element only in dn, which is chosen to make rnn

real and is returned in S(n).

The two by two part of the plane rotations are of the form of equation (1) for F06QPF and (10) (with
c real) for F06TPF. The cosine and sine that define Sk are returned in C(k) and S(k) respectively and
the tangent that defines the rotation Pk is returned in the element of X corresponding to xk. (Routines
F06BCF and F06CCF may be used to recover the cosine and sine from a given tangent.) The array Y is
unchanged on exit.

U must be supplied in the n × n upper triangular part of the array A and is overwritten by R. In the
case of F06TPF the imaginary parts of the diagonal elements of U must be supplied as zero.

F06QQF and F06TQF perform the factorization(
U

αxT

)
= Q

(
R
0

)
,

where alpha is a scalar, x is an n element vector, U and R are n× n upper triangular matrices and Q is
an (n + 1) × (n + 1) orthogonal (unitary for F06TQF) matrix. For F06TQF, if U is supplied with real
diagonal elements then the diagonal elements of R will also be real. Q is formed as a sequence of plane
rotations

QT = Qn, . . . , Q2, Q1 for F06QQF

QH = Qn, . . . , Q2, Q1 for F06TQF,

where Qk is a rotation for the (k, n+ 1) plane.

The two by two part of the plane rotations are of the form of equation (1) for F06QQF and (10) (with
c real) for F06TQF. The cosine, sine and tangent that define Qk are returned respectively in C(k), S(k)
and the element of X that corresponds to xk. (Routines F06BCF and F06CCF may be used to recover
the cosine and sine from a given tangent.)

U must be supplied in the n× n upper triangular part of the array A and is overwritten by R.

F06QRF and F06TRF perform one of the operations

R← PH when SIDE = ’L’,
R← HPT for F06QRF
R← HPH for F06TRF

}
when SIDE = ’R’,

where H is an n×n upper Hessenberg matrix, P is an n×n orthogonal (unitary for F06TRF) matrix and
R is an n× n upper triangular matrix. H is assumed to have (possibly) non-zero sub-diagonal elements
only in elements hk+1,k and these elements must be supplied in S(k), k = k1, k1 + 1, . . . , k2 + 1. For
F06TRF, H must have real sub-diagonal elements and R will be returned with real diagonal elements.
The upper triangular part of H must be supplied in A and is overwritten by R.

When SIDE = ’L’, P is given by

P = Pk2−1, Pk2−2, . . . , Pk1 for F06QRF,

P = Dk2, Pk2−1, Pk2−2, . . . , Pk1 for F06TRF,

and when SIDE = ’R’, P is given by

F06.36 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

P = Pk1, Pk1+1, . . . , Pk2−1 for F06QRF,

P = Dk1, Pk1, Pk1+1, . . . , Pk2−1 for F06TRF,

where Pk is a plane rotation matrix for the (k, k + 1) plane and Dk is a unitary diagonal matrix with a
non-unit diagonal element only in dk.

The two by two part of the plane rotations are of the form of equation (1) for F06QRF and (11) (with
s real) for F06TRF. The cosine and sine that define Pk are returned in C(k) and S(k) respectively and,
for F06TRF, dk is returned in C(k2).

F06QSF and F06TSF perform one of the operations

R← PH when SIDE = ’L’,
R← HPT for F06QSF
R← HPH for F06TSF

}
when SIDE = ’R’,

where H is an n × n upper spiked matrix, P is an n × n orthogonal (unitary for F06TSF) matrix and
R is an n× n upper triangular matrix. When SIDE = ’L’, H is assumed to have a row spike and have
(possibly) non-zero sub-diagonal elements only in elements hk2,k, k = k1, k1 + 1, . . . , k2 − 1 and when
SIDE = ’R’, H is assumed to have a column spike and have (possibly) non-zero sub-diagonal elements
only in elements hk+1,k1, k = k1, k1 + 1, . . . , k2 − 1. These spiked elements must be supplied in the
elements S(k), k = k1, k1+1, . . . , k2− 1. For F06TSF, H must have real diagonal elements except in the
position where the spike joins the diagonal, that is hk2,k2 for a row spike and hk1,k1 for a column spike,
and R will be returned with real diagonal elements. The upper triangular part of H must be supplied in
A and is overwritten by R.

When SIDE = ’L’, P is given by

P = Pk2−1, Pk2−2, . . . , Pk1 for F06QSF,

P = Dk2, Pk2−1, Pk2−2, . . . , Pk1 for F06TSF,

where Pk is a plane rotation matrix for the (k, k2) plane and when SIDE = ’R’, P is given by

P = Pk1+1, Pk1+2, . . . , Pk2−1 for F06QSF,

P = Dk1, Pk1+1, Pk1+2, . . . , Pk2+1 for F06TSF,

where Pk is a plane rotation matrix for the (k1, k) plane and Dk is a unitary diagonal matrix with a
non-unit diagonal element only in dk.

The two by two part of the plane rotations are of the form of equation (1) for F06QSF and (10) (with c
real) for F06TSF. The cosine and sine that define Pk are returned in C(k) and S(k) respectively and, for
F06TSF, dk is returned in S(k2).

F06QTF and F06TTF perform one of the operations

R← PUQT for F06QTF
R← PUQH for F06TTF

}
when SIDE = ’L’

R← QUPT for F06QTF
R← QUPH for F06TTF

}
when SIDE = ’R’

where U and R are n × n upper triangular matrices and P and Q are n × n orthogonal (unitary for
F06TTF) matrices, with P given. When SIDE = ’L’ then P is assumed to be given by

P = Pk2−1, Pk2−2, . . . , Pk1

and Q is then given as
Q = Qk2−1, Qk2−2, . . . , Qk1

and when SIDE = ’R’ then P is assumed to be given by

P = Pk1, Pk1+1, . . . , Pk2−1

and Q is then given as
Q = Qk1, Qk1+1, . . . , Qk2−1,

[NP3390/19/pdf] F06.37

Introduction – F06 F06 – Linear Algebra Support Routines

where Pk and Qk are plane rotations matrices for the (k, k + 1) plane.

The two by two part of the plane rotations are of the form of equation (1) for F06QTF and (10) (with
c real) for F06TTF. The cosine and sine that define Pk must be supplied in C(k) and S(k) respectively,
and are overwritten by the cosine and sine that define Qk.

The matrix U must be supplied in the upper triangular part of A and is overwritten by R.

F06QVF and F06TVF perform one of the operations

H ← PU when SIDE = ’L’,
H ← UPT for F06QVF
H ← UPH for F06TVF

}
when SIDE = ’R’,

where U is an n× n upper triangular matrix, H is an n× n upper Hessenberg matrix and P is an n× n
orthogonal (unitary for F06TVF) matrix. For F06TVF, U must be supplied with real diagonal elements
and H will have real sub-diagonal elements. When SIDE = ’L’ or ’l’, then P is assumed to be given by

P = Pk1, Pk1+1, . . . , Pk2−1

and when SIDE = ’R’, then P is assumed to be given by

P = Pk2−1, Pk2−2, . . . , Pk1,

where Pk is a plane rotation matrix for the (k, k + 1) plane.

The two by two part of the plane rotations are of the form of equation (1) for F06QVF and (11) (with s
real) for F06TVF. The cosine and sine that define Pk must be supplied in C(k) and S(k) respectively.

The matrix U must be supplied in the upper triangular part of A and is overwritten by the upper
triangular part of H . The sub-diagonal elements of H , hk+1,k, are returned in the elements S(k),
k = k1, k1 + 1, . . . , k2− 1.
F06QWF and F06TWF perform one of the operations

H ← PU when SIDE = ’L’,
H ← UPT for F06QWF
H ← UPH for F06TWF

}
when SIDE = ’R’,

where U is an n × n upper triangular matrix, H is an n × n upper spiked matrix and P is an n × n
orthogonal (unitary for F06TWF) matrix. For F06TWF, U must be supplied with real diagonal elements
and H will have real diagonal elements, except for the position where the spike joins the diagonal.

When SIDE = ’L’, then P is assumed to be given by

P = Pk1, Pk1+1, . . . , Pk2−1,

where Pk is a plane rotation matrix for the (k, k2) plane and when SIDE = ’R’, then P is assumed to be
given by

P = Pk2−1, Pk2−2, . . . , Pk1,

where Pk is a plane rotation matrix for the (k1, k + 1) plane.

The two by two part of the plane rotations are of the form of equation (1) for F06QWF and (10) for
F06TWF. The cosine and sine that define Pk must be supplied in the elements C(k) and S(k) respectively.

The matrix U must be supplied in the upper triangular part of A and is overwritten by the upper
triangular part of H . The sub-diagonal elements of H , hk2,k (row spike) when SIDE = ’L’, and hk+1,k1

(column spike) when SIDE = ’R’ are returned in the elements S(k), k = k1, k1 + 1, . . . , k2− 1.
F06QXF, F06TXF, F06TYF and F06VXF perform the operation

A← PA when SIDE = ’L’,
A← APT for F06QXF and F06VXF
A← APH for F06TXF and F06TYF

}
when SIDE = ’R’,

F06.38 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

where A is anm by nmatrix and P is an orthogonal (unitary for F06TXF and F06TYF) matrix consisting
of a sequence of plane rotations, applied in planes k1 to k2. When DIRECT = ’F’ then P is given by
the sequence

P = Pk2−1, . . . , Pk1+1, Pk1

and when DIRECT = ’B’ then P is given by the sequence

P = Pk1, Pk1+1, . . . , Pk2−1,

where Pk is a plane rotation matrix for the (k, k + 1) plane when PIVOT = ’V’, Pk is a plane rotation
matrix for the (k1, k + 1) plane, when PIVOT = ’T’ and Pk is a plane rotation matrix for the (k, k2)
plane when PIVOT = ’B’ or ’b’.

The two by two plane rotation part of Pk is assumed to be of the form given by equation (1) for F06QXF
and F06VXF, (10) (with c real) for F06TXF and (11) (with s real) for F06TYF. The cosine and sine
that define Pk must be supplied in C(k) and S(k) respectively.

4.5 The Level-3 Matrix-matrix Routines

The matrix-matrix routines all have either two or three arguments representing a matrix, one of which
is an input-output argument, and in each case the arguments are two-dimensional arrays.

The sizes of the matrices are determined by one or more of the arguments M, N and K. The size of the
input-output array is always determined by the arguments M and N for a rectangular m by n matrix,
and by the argument N for a square n by n matrix. It is permissible to call the routines with M or N =
0, in which case the routines exit immediately without referencing their array arguments.

Many of the routines perform an operation of the form

C ← P + βC,

where P is the product of two matrices, or the sum of two such products. When the inner dimension of
the matrix product is different from m or n it is denoted by K. Again it is permissible to call the routines
with K = 0 and if M > 0, but K = 0, then the routines perform the operation

C ← βC.

As with the Level-2 routines (see Section 4) the description of the matrix consists of the array name (A
or B or C) followed by the first dimension (LDA or LDB or LDC).

The arguments that specify options are character arguments with the names SIDE, TRANSA, TRANSB,
TRANS, UPLO and DIAG. UPLO and DIAG have the same values and meanings as for the Level-
2 routines (see Section 4.3); TRANSA, TRANSB and TRANS have the same values and meanings
as TRANS in the Level-2 routines, where TRANSA and TRANSB apply to the matrices A and B
respectively. SIDE is used by the routines as follows:

Value Meaning

’L’ Multiply general matrix by symmetric, Hermitian or triangular matrix on the left

’R’ Multiply general matrix by symmetric, Hermitian or triangular matrix on the right

The storage conventions for matrices are as for the Level-2 routines (see Section 4.3).

4.5.1 The Level-3 BLAS matrix-matrix routines

SUBROUTINE F06YAF (TRANSA,TRANSB, M,N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

ENTRY sgemm (TRANSA,TRANSB, M,N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

CHARACTER*1 TRANSA,TRANSB

INTEGER M,N,K, LDA, LDB, LDC

real ALPHA,A(LDA,*),B(LDB,*),BETA,C(LDC,*)

SUBROUTINE F06ZAF (TRANSA,TRANSB, M,N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

ENTRY cgemm (TRANSA,TRANSB, M,N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

CHARACTER*1 TRANSA,TRANSB

INTEGER M,N,K, LDA, LDB, LDC

complex ALPHA,A(LDA,*),B(LDB,*),BETA,C(LDC,*)

[NP3390/19/pdf] F06.39

Introduction – F06 F06 – Linear Algebra Support Routines

SUBROUTINE F06YCF (SIDE,UPLO, M,N, ALPHA,A,LDA, B,LDB, BETA,C,LDC)

ENTRY ssymm (SIDE,UPLO, M,N, ALPHA,A,LDA, B,LDB, BETA,C,LDC)

CHARACTER*1 SIDE,UPLO

INTEGER M,N, LDA, LDB, LDC

real ALPHA,A(LDA,*),B(LDB,*),BETA,C(LDC,*)

SUBROUTINE F06ZCF (SIDE,UPLO, M,N, ALPHA,A,LDA, B,LDB, BETA,C,LDC)

ENTRY chemm (SIDE,UPLO, M,N, ALPHA,A,LDA, B,LDB, BETA,C,LDC)

CHARACTER*1 SIDE,UPLO

INTEGER M,N, LDA, LDB, LDC

complex ALPHA,A(LDA,*),B(LDB,*),BETA,C(LDC,*)

SUBROUTINE F06ZTF (SIDE,UPLO, M,N, ALPHA,A,LDA, B,LDB, BETA,C,LDC)

ENTRY csymm (SIDE,UPLO, M,N, ALPHA,A,LDA, B,LDB, BETA,C,LDC)

CHARACTER*1 SIDE,UPLO

INTEGER M,N, LDA, LDB, LDC

complex ALPHA,A(LDA,*),B(LDB,*),BETA,C(LDC,*)

SUBROUTINE F06YFF (SIDE,UPLO,TRANSA,DIAG,M,N, ALPHA,A,LDA, B,LDB)

ENTRY strmm (SIDE,UPLO,TRANSA,DIAG,M,N, ALPHA,A,LDA, B,LDB)

CHARACTER*1 SIDE,UPLO,TRANSA,DIAG

INTEGER M,N, LDA, LDB

real ALPHA,A(LDA,*),B(LDB,*)

SUBROUTINE F06ZFF (SIDE,UPLO,TRANSA,DIAG,M,N, ALPHA,A,LDA, B,LDB)

ENTRY ctrmm (SIDE,UPLO,TRANSA,DIAG,M,N, ALPHA,A,LDA, B,LDB)

CHARACTER*1 SIDE,UPLO,TRANSA,DIAG

INTEGER M,N, LDA, LDB

complex ALPHA,A(LDA,*),B(LDB,*)

SUBROUTINE F06YJF (SIDE,UPLO,TRANSA,DIAG,M,N, ALPHA,A,LDA, B,LDB)

ENTRY strsm (SIDE,UPLO,TRANSA,DIAG,M,N, ALPHA,A,LDA, B,LDB)

CHARACTER*1 SIDE,UPLO,TRANSA,DIAG

INTEGER M,N, LDA, LDB

real ALPHA,A(LDA,*),B(LDB,*)

SUBROUTINE F06ZJF (SIDE,UPLO,TRANSA,DIAG,M,N, ALPHA,A,LDA, B,LDB)

ENTRY ctrsm (SIDE,UPLO,TRANSA,DIAG,M,N, ALPHA,A,LDA, B,LDB)

CHARACTER*1 SIDE,UPLO,TRANSA,DIAG

INTEGER M,N, LDA, LDB

complex ALPHA,A(LDA,*),B(LDB,*)

SUBROUTINE F06YPF (UPLO,TRANS, N,K,ALPHA,A,LDA, BETA,C,LDC)

ENTRY ssyrk (UPLO,TRANS, N,K,ALPHA,A,LDA, BETA,C,LDC)

CHARACTER*1 UPLO,TRANS

INTEGER N,K, LDA, LDC

real ALPHA,A(LDA,*), BETA,C(LDC,*)

SUBROUTINE F06ZPF (UPLO,TRANS, N,K,ALPHA,A,LDA, BETA,C,LDC)

ENTRY cherk (UPLO,TRANS, N,K,ALPHA,A,LDA, BETA,C,LDC)

CHARACTER*1 UPLO,TRANS

INTEGER N,K, LDA, LDC

real ALPHA, BETA

complex A(LDA,*), C(LDC,*)

SUBROUTINE F06ZUF (UPLO,TRANS, N,K,ALPHA,A,LDA, BETA,C,LDC)

ENTRY csyrk (UPLO,TRANS, N,K,ALPHA,A,LDA, BETA,C,LDC)

CHARACTER*1 UPLO,TRAN

INTEGER N,K, LDA, LDC

complex ALPHA,A(LDA,*), BETA,C(LDC,*)

SUBROUTINE F06YRF (UPLO,TRANS, N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

ENTRY ssyrk (UPLO,TRANS, N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

CHARACTER*1 UPLO,TRANS

INTEGER N,K, LDA, LDB, LDC

real ALPHA,A(LDA,*),B(LDB,*),BETA,C(LDC,*)

F06.40 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

SUBROUTINE F06ZRF (UPLO,TRANS, N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

ENTRY cherk (UPLO,TRANS, N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

CHARACTER*1 UPLO,TRANS

INTEGER N,K, LDA, LDB, LDC

real BETA

complex ALPHA,A(LDA,*),B(LDB,*), C(LDC,*)

SUBROUTINE F06ZWF (UPLO,TRANS, N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

ENTRY csyrk (UPLO,TRANS, N,K,ALPHA,A,LDA, B,LDB, BETA,C,LDC)

CHARACTER*1 UPLO,TRANS

INTEGER N,K, LDA, LDB, LDC

complex ALPHA,A(LDA,*),B(LDB,*),BETA,C(LDC,*)

F06YAF and F06ZAF perform the operation indicated in the following table:

TRANSA = ’N’ TRANSA = ’T’ TRANSA = ’C’
TRANSB = ’N’ C ← αAB + βC C ← αATB + βC C ← αAHB + βC

A is m× k, B is k × n A is k ×m, B is k × n A is k ×m, B is k × n
TRANSB = ’T’ C ← αABT + βC C ← αATBT + βC C ← αAHBT + βC

A is m× k, B is n× k A is k ×m, B is n× k A is k ×m, B is n× k

TRANSB = ’C’ C ← αABH + βC C ← αATBH + βC C ← αAHBH + βC
A is m× k, B is n× k A is k ×m, B is n× k A is k ×m, B is n× k

where A and B are general matrices and C is a general m by n matrix.

F06YCF, F06ZCF and F06ZTF perform the operation indicated in the following table:

SIDE = ’L’ SIDE = ’R’
C ← αAB + βC C ← αBA+ βC
A is m×m B is m× n
B is m× n A is n× n

where A is symmetric for F06YCF and F06ZTF and is Hermitian for F06ZCF, B is a general matrix and
C is a general m by n matrix.

F06YFF and F06ZFF perform the operation indicated in the following table:

TRANSA = ’N’ TRANSA = ’T’ TRANSA = ’C’
SIDE = ’L’ B ← αAB B ← αATB B ← αAHB

A is triangular m×m A is triangular m×m A is triangular m×m
SIDE = ’R’ B ← αBA B ← αBAT B ← αBAH

A is triangular n× n A is triangular n× n A is triangular n× n

where B is a general m by n matrix.

F06YJF and F06ZJF solve the equations, indicated in the following table, for X:

TRANSA = ’N’ TRANSA = ’T’ TRANSA = ’C’
SIDE = ’L’ AX = αB ATX = αB AHX = αB

A is triangular m×m A is triangular m×m A is triangular m×m

SIDE = ’R’ XA = αB XAT = αB XAH = αB
A is triangular n× n A is triangular n× n A is triangular n× n

where B is a general m by n matrix. The m by n solution matrix X is overwritten on the array B. It is
important to note that no test for singularity is included in these routines.

F06YPF, F06ZPF and F06ZUF perform the operation indicated in the following table:

TRANS = ’N’ TRANS = ’T’ TRANS = ’C’
F06YPF C ← αAAT + βC C ← αATA+ βC C ← αATA+ βC
F06ZUF C ← αAAT + βC C ← αATA+ βC −
F06ZPF C ← αAAH + βC − C ← αAHA+ βC

A is n× k A is k × n A is k × n

where A is a general matrix and C is an n by n symmetric matrix for F06YPF and F06ZUF, and is an
n by n Hermitian matrix for F06ZPF.

[NP3390/19/pdf] F06.41

Introduction – F06 F06 – Linear Algebra Support Routines

F06YRF, F06ZRF and F06ZWF perform the operation indicated in the following table:

TRANS = ’N’ TRANS = ’T’ TRANS = ’C’
F06YRF C ← αABT +αBAT + βC C ← αATB+αBTA+ βC C ← αATB+αBTA+ βC

F06ZWF C ← αABT +αBAT + βC C ← αATB+αBTA+ βC −
F06ZRF C ← αABH+ ᾱBAH+βC − C ← αAHB+ ᾱBHA+βC

A and B are n× k A and B are k × n A and B are k × n

where A and B are general matrices and C is an n by n symmetric matrix for F06YRF and F06ZWF,
and is an n by n Hermitian matrix for F06ZPF.

The following values of arguments are invalid:

Any value of the character arguments SIDE, TRANSA, TRANSB, TRANS, UPLO or DIAG, whose
meaning is not specified.

M < 0

N < 0

K < 0

LDA < the number of rows in the matrix A

LDB < the number of rows in the matrix B

LDC < the number of rows in the matrix C

If a routine is called with an invalid value then an error message is output, on the error message unit (see
X04AAF), giving the name of the routine and the number of the first invalid argument, and execution is
terminated.

5 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have been withdrawn. Advice on replacing calls to these routines
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

F06QGF F06VGF

F06.42 [NP3390/19/pdf]

F06 – Linear Algebra Support Routines Introduction – F06

6 Indexes of BLAS routines
Real Matrices Complex Matrices

BLAS BLAS BLAS BLAS
single precision double precision NAG single precision double precision NAG
ISAMAX IDAMAX F06JLF ICAMAX IZAMAX F06JMF

SASUM DASUM F06EKF CAXPY ZAXPY F06GCF

SAXPY DAXPY F06ECF CAXPYI ZAXPYI F06GTF

SAXPYI DAXPYI F06ETF CCOPY ZCOPY F06GFF

SCASUM DCASUM F06JKF CDOTC ZDOTC F06GBF

SCNRM2 DCNRM2 F06JJF CDOTCI ZDOTCI F06GSF

SCOPY DCOPY F06EFF CDOTU ZDOTU F06GAF

SDOT DDOT F06EAF CDOTUI ZDOTUI F06GRF

SDOTI DDOTI F06ERF CGBMV ZGBMV F06SBF

SGBMV DGBMV F06PBF CGEMM ZGEMM F06ZAF

SGEMM DGEMM F06YAF CGEMV ZGEMV F06SAF

SGEMV DGEMV F06PAF CGERC ZGERC F06SNF

SGER DGER F06PMF CGERU ZGERU F06SMF

SGTHR DGTHR F06EUF CGTHR ZGTHR F06GUF

SGTHRZ DGTHRZ F06EVF CGTHRZ ZGTHRZ F06GVF

SNRM2 DNRM2 F06EJF CHBMV ZHBMV F06SDF

SROT DROT F06EPF CHEMM ZHEMM F06ZCF

SROTG DROTG F06AAF CHEMV ZHEMV F06SCF

SROTI DROTI F06EXF CHER ZHER F06SPF

SSBMV DSBMV F06PDF CHER2 ZHER2 F06SRF

SSCAL DSCAL F06EDF CHER2K ZHER2K F06ZRF

SSCTR DSCTR F06EWF CHERK ZHERK F06ZPF

SSPMV DSPMV F06PEF CHPMV ZHPMV F06SEF

SSPR DSPR F06PQF CHPR ZHPR F06SQF

SSPR2 DSPR2 F06PSF CHPR2 ZHPR2 F06SSF

SSWAP DSWAP F06EGF CSCAL ZSCAL F06GDF

SSYMM DSYMM F06YCF CSCTR ZSCTR F06GWF

SSYMV DSYMV F06PCF CSSCAL ZSSCAL F06JDF

SSYR DSYR F06PPF CSWAP ZSWAP F06GGF

SSYR2 DSYR2 F06PRF CSYMM ZSYMM F06ZTF

SSYR2K DSYR2K F06YRF CSYR2K ZSYR2K F06ZWF

SSYRK DSYRK F06YPF CSYRK ZSYRK F06ZUF

STBMV DTBMV F06PGF CTBMV ZTBMV F06SGF

STBSV DTBSV F06PKF CTBSV ZTBSV F06SKF

STPMV DTPMV F06PHF CTPMV ZTPMV F06SHF

STPSV DTPSV F06PLF CTPSV ZTPSV F06SLF

STRMM DTRMM F06YFF CTRMM ZTRMM F06ZFF

STRMV DTRMV F06PFF CTRMV ZTRMV F06SFF

STRSM DTRSM F06YJF CTRSM ZTRSM F06ZJF

STRSV DTRSV F06PJF CTRSV ZTRSV F06SJF

7 References

[1] Dodson D S and Grimes R G (1982) Remark on Algorithm 539 ACM Trans. Math. Software 8
403–404

[2] Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra
subprograms ACM Trans. Math. Software 17 253–263

[3] Dongarra J J, Moler C B, Bunch J R and Stewart G W (1979) LINPACK Users’ Guide SIAM,
Philadelphia

[4] Dongarra J J, Du Croz J J, Hammarling S and Hanson R J (1988) An extended set of FORTRAN
basic linear algebra subprograms ACM Trans. Math. Software 14 1–32

[5] Dongarra J J, Du Croz J J, Duff I S and Hammarling S (1990) A set of Level 3 basic linear algebra
subprograms ACM Trans. Math. Software 16 1–28

[6] Golub G H and Van Loan C F (1989) Matrix Computations Johns Hopkins University Press (2nd
Edition), Baltimore

[7] Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra subprograms
for Fortran usage ACM Trans. Math. Software 5 308–325

[NP3390/19/pdf] F06.43 (last)

